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Summary 

Marginal damage costs in international dollars (US$2020 Purchasing Power Parity) per m3 (1000 

litres) of blue water withdrawal are estimated for 164 countries. The damage costs estimate 2020 

present value of present and future economic losses from water scarcity due to 1 m3 of blue water 

withdrawn in 2020. 

The marginal damage costs for each country are provided as random variables of loss in parametric 

form in Table 2 on page 35. Two parameters, mu and sigma, are estimated for a lognormal 

distribution of probable US$2020 PPP present values given 1 m3 of blue water withdrawn. The 

samples from which the parametric form is derived and the correlation matrix for covariance of loss 

across countries are available in the SPIQ-FS dataset. 

Use for economic loss 

The objective of the SPIQ-FS dataset is to enable estimates of economic risk due to food system 

activities and the economic potential of food system transformation. The intended use involves 

aggregation across countries and quantities, for example, in global studies of dietary change or for 

multinational company or value chain estimates of impact. 

The marginal cost estimates should not be used for local or site-specific studies. 

The estimate represents aggregated economic loss to a present or future economy (e.g. reduction in 

Gross Domestic Product (GDP) or consumption as an income-equivalent welfare loss) and not 

transfers between individual economic actors or sectors (e.g. payments from households to the 

health sector for health costs). 

The average value of probable US$2020 PPP present values given 1 m3 of blue water withdrawn is 

reported in Table 2 on page 35. The average value should be used to calculate the average value of 

total economic losses across multiple countries and quantities since it is additive. 

To calculate risk in total economic losses within a country, the distribution of probable US$2020 PPP 

present values given 1 m3 of water withdrawn in Table 2 should be multiplied by a quantity of water 

withdrawal. This may overestimate the uncertainty in total economic losses for a large quantity of 

withdrawal and may underestimate the uncertainty for a small quantity of withdrawal given only the 

knowledge that the withdrawal occurs within the country1. 

 
1 Over- or under-estimation may result since it is unclear whether 1m3 withdrawals by food system activities 
represent independent lotteries of economic loss. When aggregating to a total economic loss for n m3 
withdrawn, the sum of n random variables each with lognormal distribution given by Table 2 as a 
representation of the uncertainty in total economic loss should not be used without a sufficient argument for 
independence within the impact pathways of each unit of water withdrawn. For example, the total economic 
impact of CO2 emissions in 2050, treating each emission as a random draw from the distribution of economic 
loss for 1 metric ton of CO2 emitted and summing the random variables, will result in a gross error if economic 
loss is not independent between each emission due to a common component in the impact pathway (e.g. a 
systematic underestimate in the chemistry of radiative forcing). For water scarcity, impacts in the same 
catchment share common populations and uses, and income impacts across catchments in the same region 
are connected by price transmission. The uncertainty in economic losses from blue water withdrawal has been 
estimated from larger scale estimates, e.g. national rates of DALYs per person undernourished and uncertainty 
in national producer prices, so the overestimation is likely to be smaller than the underestimation. Uncertainty 
for marginal damage costs when quantities are unspecified is not fully resolved in SPIQ Version 0. 
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To calculate risk in total economic losses across multiple impact quantities and multiple countries, 

the correlation matrices in the SPIQ dataset should be used to reconstruct a joint distribution of 

probable US$2020 PPP present values for the impact quantities2. Samples from the joint distribution 

of marginal damages should be multiplied by their respective quantities for each country and then 

added. The resulting set is a sample of total economic losses. Economic risk or economic potential is 

generally underestimated without using joint sampling. 

It is not recommended to use the average values in Table 2 separate from the uncertainty estimate. 

Use for economic potential 

The marginal damage costs in Table 2 and any totals for economic losses calculated using them do 

not include the value (benefits) provided to society from 1m3 of blue water withdrawn. There is no 

comparison with a counterfactual to estimate the balance of value between avoided damages from 

water scarcity and the costs to abate blue water withdrawals. Abatement costs include the option of 

‘paying the cost’ of losing the production value from 1m3 of blue water withdrawn. 

Reducing water use will not ‘save the costs’ to the global economy of amounts calculated using the 

values in Table 2. Damage costs should be paired with abatement costs and counterfactuals to 

determine the economic risk from food system activities and the economic potential in food system 

transformation. 

The simplest use with a counterfactual is two or more scenarios which, all else being equal, have the 

same value from production with different quantities of blue water withdrawal. In this case, a 

change in overall economic value is estimated by the marginal damage costs multiplied by the 

change in blue water withdrawal. 

Methodology and caveats 

Impact pathway 

Blue water deprivation at present or at a future time, which is assumed to be, through damage to 

the water resource from blue water withdrawal, the effective reduction of the total amount of blue 

water available for economic activity, is taken from a spatial dataset from literature. 

Deprived water is assumed to concentrate in reduced agricultural use and crop production. Reduced 

crop production introduces malnutrition or income losses in households not at risk of malnutrition. 

Disease or death from malnutrition reduces gross productivity. 

Reduction in environmental flows and effects on ecosystem services were not included due to lack 

of quantitative estimates of water as a productivity factor for ecosystem services. 

Reduced water for drinking and sanitation were not included due to lack of quantitative estimates of 

the attribution of deprived units of water to human disease from reduced water intake and lack of 

 
2 Covariance in economic losses due to joint emission or production of impact quantities from food system 
activities, for example 1 m3 of water withdrawn in country 𝑖 and 1 metric ton of CO2 emitted in country 𝑗, is 
estimated in the document “SPIQ-FS Version 0: double counting and estimation of correlations between 
impact quantities”. The parametric form given in Table 2 represents what is called the marginal distribution of 
a joint distribution across countries and quantities of marginal damages for the impact quantities associated to 
food system activities. Determination of the correlations considers spatial and temporal coincidence of impact. 
All SPIQ-FS Version 0 damages are for impact quantities produced in 2020. A later version may consider joint 
distribution across countries and quantities and years of emission/production. 
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sanitation. Global datasets were not available for estimates of drinking water costs, e.g. loss of 

productivity from additional walking distance to freshwater sources. 

Later versions of SPIQ-FS will consider effects on ecosystem services and drinking water and 

sanitisation. 

Calculation and uncertainty 

Calculating economic losses of malnutrition from reduced food production is based on an 

established Life Cycle Impact Analysis (LCIA) methodology. The Food and Agriculture Organisation of 

the UN (FAO) measure of undernourishment is used as the proxy for number of people in 

malnutrition and economic loss is measured by productivity loss from Disability-Adjusted Life Years 

(DALYs) of energy-protein malnutrition as defined by World Health Organisation (WHO). 

Value of crop losses are estimated using a spatially explicit dataset from literature of contribution of 

water to major crop production. The value of crops is based on FAO producer (farm-gate) prices. 

Large uncertainty exists in the water deprivation factor, including uncertainty which uses will be 

deprived and when. The spatial dataset for deprivation had no temporal aspect, so uncertain time of 

deprivation was modelled. Uncertainty in models for the number of undernourished people due to 

reduced food production, and the rate of DALYs in an undernourished population, was accounted 

for. Historical variation in producer prices, and correlation amongst countries, was incorporated in 

income loss estimates. 

The variation between countries is large, from US$2020 PPP 200-300 per megalitre of blue water 

withdrawal in wealthy middle east countries and the east Mediterranean to US$2020 PPP <1 per 

megalitre in water abundant countries and/or countries with low use of irrigation. There are mainly 

four reasons for these variations:  

1) Variation in water stress (a component of the water deprivation factor and in the temporal 

parameters used for discounting) is the dominant factor.  

2) Countries have differing productivity of blue water as a component of farm-gate value of 

crops.  

3) Difference in productivity loss is the third factor in country variation. Productivity losses 

from DALYs are estimated by labour productivity statistics (International Labour 

Organisation (ILO)) and averaged across human development (Human Development Index 

(HDI)) tiers. 

4) Lastly, the uncertainty of projected GDP growth introduces variation between countries. 

Caveats in the estimate of water deprivation include a lack of transboundary effects, the averaging 

of value of crop losses across catchments, and ambiguity in the LCIA model of attribution of deprived 

water to population undernourishment. The complexity of connecting by-products of food system 

activities to accumulated natural and human change, and then economic consequences, is a primary 

motivation to model uncertainty alongside estimates. Potential improvements will be afforded by a 

greater emphasis on spatially explicit modelling in SPIQ-FS Version 1. 

Damage costs in the SPIQ-FS dataset are not valuable for direct comparison of countries. The costs 

represent primarily the externalised costs of blue water use for market corrections in the economies 

where the costs are borne. Low-income countries are doubly discounted from a higher expected 

growth rate in the future, current lower use of irrigation, and lower values of labour productivity 

losses. 
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Global perspective 

For perspective, FAO estimates of blue water withdrawal for agriculture across 164 countries are 

paired with the marginal damage costs (Section 2.6 from page 26 and Section 2.11.2 from page 44). 

Estimated global costs of present blue water withdrawal for agriculture are over US$2020 PPP 110 

billion, with a greater than 5% chance that costs are over US$2020 PPP 150 billion. India represents 

over a quarter of the total damage costs with an expected loss of US$2020 PPP 34 billion. How much 

of this estimated economic loss can be recovered from transforming food systems and agricultural 

production is unclear without global modelling studies of blue water abatement.  
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2 Water Use 

2.1 Quantities associated to impact 
Agriculture is responsible for 70% of global freshwater withdrawals (varying geographically from 12% 

in South and Central America to 53% in North America and 81% in Asia and Africa, FAO global 

information system on water resources and agricultural water management (AQUASTAT)). 

Agriculture consumes 85% of the water that is withdrawn and not returned to the same catchment 

[1]. 

Increasing water scarcity [2, 3] and decreasing water quality [4] are the two main causes of impacts 

associated to food system water use. 

Marginal costing below focusses on the impacts of water scarcity and use the unit of m3 yr-1 of blue 

water withdrawn from surface and groundwater sources. 

Impacts of water quality in terms of nutrients are included in other marginal costs: 

• Nitrogen pollution run-off and ground water leaching. 

• Phosphorous pollution run-off. 

Water quality factors not included: 

• Soil erosion (sediment). 

• Chemical pollutants from industrial food processing [5]. 

• Biochemical contaminants, including antibiotic residues [6]. 

• Downstream effects of the use of untreated wastewater in agriculture [7]. 

2.2 Damage components 

2.2.1 Agricultural use of water 
Agriculture activities consume green water (direct precipitation) and blue water (freshwater 

withdrawn from lakes, dams, rivers, and aquifers). Blue water withdrawals are costed as a proxy for 

blue water consumption, but green water consumption is not costed directly. 

Crops, and livestock production on grasslands, consumes more green water than blue water. The 

majority of cropland is solely rainfed (green water), irrigated cropland globally uses ~600 km3 yr-1 of 

blue water and 325 km3 yr-1 of green water, and non-irrigated cropland globally ~7000 km3 yr-1 of 

green water [8]. Green water cropland consumption is estimated at ~18% of green water flow to 

ecosystems [8]. 

Crop production, through the market price of cereals as input for feed, reflects most of the value of 

water to livestock production on an aggregated basis. The bulk of livestock water use is in feed, not 

direct drinking water [9]. In certain grazing locations and livestock systems, drinking water will be a 

primary water input. Food system effects on green water availability rest on atmospheric and 

hydrological effects (i.e. the impacts of which should be attributed to GreenHouse Gas (GHG) 

emissions and land-use change, not blue water withdrawal from freshwater sources [3]). 

Blue water withdrawal overestimates blue water consumption. However, agricultural uses are highly 

consumptive compared to other sectors, and a lack of data on water consumption, has led to water 

withdrawal as the metric used in most analyses and costings [8]. 
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2.2.2 Overuse leading to scarcity and impacts 
Water withdrawal can lead to water scarcity and water deprivation. Water deprivation is a reduction 

in the total water utilised in the water resource for present or future uses including environmental 

flows for ecosystems. The reduction in water utilised has human, ecosystem, and agricultural 

impacts [10]: 

• Costs to human populations from reduced availability of water for sanitation and drinking 

[11]. 

• Losses to (crop) production occurs through change in water available for irrigation [12, 13]. 

• Losses from impaired ecosystem services due to reduced environmental flows. 

Mining and energy production, besides agriculture, households, and ecosystems, are the other 

major and spatially heterogeneous blue water users. 

2.3 Existing estimates of marginal costs 
Water scarcity impacts have local marginal damages, that can vary even within watersheds [14]. 

Mitigation measures are local as well: a different measure can be cheaper to abate the same amount 

of withdrawal of the same agricultural activity in different catchments [10]. Therefore marginal 

social costs are challenging to calculate. 

The estimates that exist are based on water deprivation – a reduction in available water in the 

present or a future time from water withdrawal in the present, and they concentrate on losses from 

crop production (malnutrition or income loss). Sophisticated but exploratory studies of future 

trajectories of water deprivation have been conducted [10]. Incorporating these studies is future 

work. No simple estimates on a catchment or country basis could be found for the trajectory of 

water deprivation from a water withdrawal in the present. We therefore use present estimates of 

crop value and malnutrition for a unit of blue water deprived in the present as a proxy for a future 

blue water deprived and discount the final cost using an uncertainty distribution over time of the 

deprivation caused by a withdrawal now. 

Ecosystem service losses from water scarcity outside of food production do not appear to have been 

systematically costed. Damages from scarcity through impacting household sanitation and drinking 

also do not appear to have been systematically costed. Improved costings would add these 

components – under the provision that double counting between social damages of poverty and 

sanitation outcomes is examined, and the complex interaction required to assess ecosystem 

impairment given water scarcity, excess nutrients (Nr emissions) and land use changes is accounted 

for. 

2.3.1 Malnutrition from crop loss 

The reference [11] estimates population malnutrition impacts from deprived units of water. A chain 

of components is multiplied together to form the estimate (equation (1) below).  The term 𝐸𝐹𝑖  (ppl / 

m3 deprived) is the rate of people undernourished due to the deprived water to agriculture in 

country 𝑖. The term 𝐷𝐹𝑖 (DALY / ppl) is the rate of DALYs (WHO 2019, energy-protein malnutrition) 

against the number of people undernourished in country 𝑖. The term 𝐶𝐹𝑖 is the economic cost to 

country 𝑖 of a DALY lost to malnutrition in international dollars (US$2020 PPP / DALY). Finally, the 

term 𝑊𝐷𝐹𝑖 (m
3 deprived / m3 withdrawn) calculated in [11] is the deprivation factor, it is meant to 

estimate what is the rate of deprived water to agriculture against blue water withdrawal from 

surface or groundwater sources (not desalination). Note that a unit of blue water of withdrawal does 

not cause a deprived unit of water unless there is water scarcity (insufficient blue water for the 
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current level of crop production). The term 𝑊𝐷𝐹𝑖 is a function of total blue water withdrawals. The 

marginal damage cost (US$2020 PPP / m3 withdrawn) of malnutrition in country 𝑖 of a unit of blue 

water withdrawal from surface or groundwater sources is: 

𝑀𝐷𝐶𝑚𝑎𝑙,𝑖  =   𝐶𝐹𝑖 ⋅ 𝐷𝐹𝑖 ⋅ 𝐸𝐹𝑖 ⋅ 𝑊𝐷𝐹𝑖 . (1) 

For 158 countries with available data, the calculation of the terms and uncertainty estimates are in 

the section on estimation and uncertainty below.  

The method of [11] calculates no prevalence of malnutrition impacts in countries with HDI > 0.89. To 

separate out conflation (double counting) of malnutrition and income loss effects for agricultural 

workers, prevalence of malnutrition for agriculture workers is used. Those households with 

malnutrition suffer the damage cost of malnutrition, and those without suffer the crop loss effect on 

income from [13]. This underestimates the combined malnutrition and income loss effects. Income 

loss from crop loss is the impact for countries with HDI > 0.89.  

2.3.2 Income from crop production 

The present value of a unit of blue water (irrigation) to crop production has been determined 

globally using a mechanistic biophysical model in [13]. The valuation examined 16 major crops at the 

global scale on a 10-km grid using a productivity function approach. It used 2019 farm gate market 

prices of the current crops produced on the land cell (FAOSTAT). FAOSTAT producer prices converts 

local currencies into internationals dollars (US$ PPP). Production is assumed to not be limited by 

other inputs, including nitrogen (N) and phosphorous (P). 

Deprived units of blue water across different catchments results in reduced supply of crops. The 

marginal damage costs from [13] assume negligible costs for provision of irrigated water. Effects on 

other economic activity from reduced agricultural production is not included. Assuming the same 

demand, then prices would increase. The change in prices due to simultaneous scarcity occurring in 

other basins may imply that the economic return from the remaining production of crops outweighs 

the loss of production at previous prices [10] – this kind of correction needs to be accounted for in 

more sophisticated estimates, with caveats on the engagement of crop producers in various 

countries with international trade. 

There is no dependence of the marginal damage cost on the total amount of withdrawals in the 

same or other basins using the calculation of [13], outside of the present value and distribution of 

crops influenced by present hydrological availability and total withdrawals. Present dependence is 

partially captured in the correlation structure of joint uncertainty in producer prices modelled 

below. The correlation is based on historical data, not a future with increased environmental 

change. The distributional effects of human cost from lost crop production, or equivalently, higher 

prices, is partially captured by a malnutrition component of the impact assessment of [11]. 

Let 𝑉𝐹𝑖𝑛𝑐,𝑖  (US$2020 PPP / m3 deprived) be the average value loss to agriculture from crop loss in 

country 𝑖 due to a deprived unit of water calculated from [13]. Using the water deprivation estimate 

𝑊𝐷𝐹𝑖, then a marginal damage cost to agricultural income from crop loss in country 𝑖 is 

𝑀𝐷𝐶𝑖𝑛𝑐,𝑖  = 𝑉𝐹𝑖 ⋅ 𝑊𝐷𝐹𝑖. (2) 

There is no temporal aspect to 𝑊𝐷𝐹𝑖  from [11] in either (1) or (2). The distribution in time of the 

losses from water deprivation materialising from a water withdrawal in the present is uncertain. No 

simple estimates on a catchment or country basis could be found for the trajectory of water 

deprivation from water scarcity. A representation of this uncertainty is given below by discounting 

the monetary amount in (1) and (2) by a distribution of discount rates. 
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2.3.3 Marginal damage cost for water withdrawal 
A national level marginal damage cost (US$2020 PPP / m3 withdrawn) from a unit of blue water 

withdrawal somewhere within country 𝑖 is 

𝑀𝐷𝐶𝑤𝑎𝑡𝑒𝑟,𝑖 = 𝜌𝑖 ⋅ (𝑀𝐷𝐶𝑚𝑎𝑙,𝑖 + (1 − 𝛼𝑖) ⋅ 𝑀𝐷𝐶𝑖𝑛𝑐,𝑖) (3)  

where 𝛼𝑖 is the prevalence of malnutrition in agricultural workers in country 𝑖 to avoid double 

counting income and malnutrition effects, and 𝜌𝑖 is a discounting term for uncertainty in when the 

cost is incurred. 

The equation (3) is formalised and calculated with uncertainty using data from [11] and [13] below. 

Estimates using (3) do not include the income effects on farming households with malnutrition 

outside of the role of income in malnutrition. They do not consider that households without 

malnutrition are likely the households where a greater proportion of crops are grown. The estimate 

(3) is at a country level and takes the average marginal damage cost for crop loss in that country. 

Therefore, it does not account for greater volumes of water withdrawn within catchments with 

higher value agriculture. A more accurate estimate afforded by the resolution in [13] is to average 

marginal damages losses from crop losses across catchments, if the quantity of total water 

withdrawals per catchment are used as the quantities of impact. Other considerations from lack of 

temporal resolution in impacts are discussed below. 

Estimates for the uncertainty in 𝑀𝐷𝐶𝑚𝑎𝑙,𝑖, 𝛼𝑖, 𝜌𝑖, and 𝑀𝐷𝐶𝑖𝑛𝑐,𝑖 are discussed below. 

2.4 Formalising damage costs 
Estimating the partial rate of change of damage costs 𝐷 given blue water withdrawal 𝑤𝑗 at spatial 

location 𝑗, when the damage cost has the components of: 𝑆𝑘  reduced availability of water for 

sanitation and drinking at time 𝑡 in a water catchment 𝑘; malnutrition 𝑀𝑖 and losses to income 𝐼𝑖 at 

time 𝑡 in a country 𝑖; and reduced environmental flows damaging ecosystem services 𝐸𝑘  at time 𝑡 in 

a water catchment, can be formalised by, 

𝜕𝐷

𝜕𝑤𝑗
= ∫ 𝜌(𝑡) (∑

𝜕𝐷

𝜕𝑀𝑖

(𝑡)
𝜕𝑀𝑖 

𝜕𝑤𝑗

(𝑡)

𝑖

+
𝜕𝐷 

𝜕𝐼𝑖

(𝑡)
𝜕𝐼𝑖 

𝜕𝑤𝑗

(𝑡) + ∑
𝜕𝐷

𝜕𝐸𝑘

(𝑡)
𝜕𝐸𝑘  

𝜕𝑤𝑗

(𝑡)

𝑘

𝜏

0

+
𝜕𝐷 

𝜕𝑆𝑘

(𝑡)
𝜕𝑆𝑘 

𝜕𝑤𝑗

(𝑡))  𝑑𝑡 

where 𝜌(𝑡) is a discounting function equating the value loss of future impacts in the time period 

[0, 𝜏] to present value 𝑡 = 0. Without loss, the sum is over all countries and catchments. Recall that 

countries (and regions) represent a hierarchal cover of the spatial locations 𝑗. The notation 𝑖𝑗 

represent the catchment, country, or region 𝑖 such that 𝑗 ⊂  𝑖 . The simplifications in equation (3) 

from available spatially explicit global estimates are: 

𝜕𝐷

𝜕𝑀𝑖
(𝑡) = 1   - damage cost is linear in costs of malnutrition and constant in time 

𝜕𝑀𝑖

𝜕𝑤𝑗
(𝑡) = 𝑀𝐷𝐶𝑚𝑎𝑙,𝑖 ⋅ 𝛿𝑖,𝑖𝑗

 - no transboundary malnutrition effects of water withdrawal, 

malnutrition costs in country of withdrawal constant in time and calculated from [11] 

𝜕𝐷

𝜕𝐼𝑖
(𝑡) = (1 − 𝛼𝑖)  - remove double counting between agriculture income and 

malnutrition effects, constant in time 
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𝜕𝐼𝑖

𝜕𝑤𝑗
(𝑡) = 𝑀𝐷𝐶𝑖𝑛𝑐,𝑗 ⋅ 𝛿𝑖,𝑖𝑗

 - no transboundary income effects of water withdrawal, income 

losses to producers in country of withdrawal from water withdrawal at location 𝑗 constant in time 

and calculated from [13] 

𝜕𝐷

𝜕𝐸𝑘
(𝑡) = 0   - no ecosystem services losses (excluding food provision in agri-

ecosystems) in any catchment 𝑘 from water withdrawal at location 𝑗 

𝜕𝐷

𝜕𝑆𝑘
(𝑡) = 0   - no costs from lost access to blue water for drinking and sanitation 

in any catchment 𝑘 from water withdrawal at location 𝑗. 

We have not specified the resolution of the catchment partition of locations, which are not 

subordinate to the partition of locations by country. If the spatial locations of water withdrawal are 

the countries themselves (the quantity is a unit of withdrawal somewhere within the country), then 

in this case 𝑀𝐷𝐶𝑖𝑛𝑐,𝑖 is the average marginal damage cost to income from crop loss calculated from 

[13] as described. Then we obtain (3): 
𝜕𝐷

𝜕𝑤𝑖
= 𝑀𝐷𝐶𝑤𝑎𝑡𝑒𝑟,𝑖. 

To not be overly technical, we have not specified functional dependence of the vectors of 

intermediate costs, 

𝑴 = {𝑴𝒊}𝒊∈𝒄𝒐𝒖𝒏𝒕𝒓𝒊𝒆𝒔 , 𝑰 = {𝐼𝑖}𝒊∈𝒄𝒐𝒖𝒏𝒕𝒓𝒊𝒆𝒔 , 𝑬 = {𝐸𝑘}𝑘∈𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑠 , 𝑺 = {𝑆𝑘}𝑘∈𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑠  

on the lists of quantities, including the vectors of quantities, 

 𝒄 = {𝑐𝑚}𝑚∈𝐶𝑂2,𝐶𝐻4,𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , 𝒘 = {𝑤𝑗}𝑗∈𝑤𝑎𝑡𝑒𝑟 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 , 

𝒏 = {𝑛𝑚}𝑚∈𝑁𝑟 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝒍 = {𝑙𝑟}𝑟∈𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 . 

Of particular focus are ecosystem services losses in a catchment, where the functional dependence 

of ecosystem services on water available, nutrients, and land use implies a non-constant term, 

𝜕𝐸𝑘  

𝜕𝑤𝑗

(𝑡, 𝒄, 𝒘, 𝒏, 𝒍). 

Costing the attribution of water withdrawal to ecosystem services damage costs without a functional 

relationship between the other critical quantities will result in an ambiguous result. It is unclear 

without estimation whether simpler approximations underestimate or overestimate damage costs 

to a significant degree. A first order approximation to 
𝜕𝐸𝑘 

𝜕𝑤𝑗
 requires at least knowledge of the second 

order rates at present or specified values 𝑡0, 𝒄𝟎, 𝒘𝟎, 𝒏𝟎, 𝒍𝟎, 

𝜕2𝐸𝑘  

𝜕𝑡𝜕𝑤𝑗

(𝑡0, 𝒄𝟎, 𝒘𝟎, 𝒏𝟎, 𝒍𝟎 ),
𝜕2𝐸𝑘  

𝜕𝑐𝑚𝜕𝑤𝑗

(𝑡0, 𝒄𝟎, 𝒘𝟎, 𝒏𝟎, 𝒍𝟎 ),
𝜕2𝐸𝑘  

𝜕𝑤𝑗1
𝜕𝑤𝑗2

(𝑡0, 𝒄𝟎, 𝒘𝟎, 𝒏𝟎, 𝒍𝟎 ), 

 
𝜕2𝐸𝑘  

𝜕𝑤𝑗𝜕𝑛𝑚

(𝑡0, 𝒄𝟎, 𝒘𝟎, 𝒏𝟎, 𝒍𝟎 ),
𝜕2𝐸𝑘  

𝜕𝑤𝑗𝜕𝑙𝑟

(𝑡0, 𝒄𝟎, 𝒘𝟎, 𝒏𝟎, 𝒍𝟎 ). 

Global simplified joint models of the carbon, nitrogen, biosphere, and water cycles would be 

required to approximate the second order terms. In the absence of a joint model the inclusion of 

correlations, Section 2.7, reflects some of the effect of the second order terms for joint interaction 

between water scarcity, climate impacts, nitrogen pollution and land-use change. 
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The formalisation above does not separate out blue water withdrawal from surface and recharging 

groundwater blue water sources, against non-recharging (or slowly recharging) groundwater 

sources. The two have differences in their impact pathways. 

2.4.1 Temporal aspects 
The components of the marginal water damage costing have discounting effects from the fact that 

water withdrawal is assumed to create water deprivation, and hence losses, at present or future 

times. Calculating the time at which water withdrawal now will cause deprivation, and losses at that 

time, requires future scenarios of water use and socio-economic factors and that the quantity of 

blue water withdrawal be separated into withdrawal from renewing and non-renewing sources. The 

temporal component and the distinction in sources in not included in the method of [11] (Figure 1). 

Evaluating the marginal water damage cost for a future time can be estimated through time 

dependence of relative components [15] [10]: 

• change in water deprivation at the future time (considering variation in the future from 

climate factors such as precipitation and temperature) as a function between future water 

availability and water uses for industry drinking and sanitation, agriculture, and the 

environment. 

• projected changes in the value and distribution of crops at the future time. 

• projected changes in vulnerability to malnutrition at the future time, which can be partly 

reflected through improvements in income and HDI. 

If the marginal cost of water includes sanitation and ecosystem impacts, the time dependence of 

these factors include: 

• future impairment of ecosystem services due non-water factors  

• future changes in downstream sanitation exposure of human settlements. 

Reduced blue water availability from green water consumption of agriculture in the present, may 

cause future scarcity in combination with present blue water withdrawals from non-renewing 

groundwater. However, green water consumption is a different economic quantity than blue water 

withdrawal and costing green water consumption requires more distinction in the quantities 

associated to impact and the impact pathways (Figure 1). 

 

Figure 1: Schematic of further distinction in impact pathway for blue water withdrawal between surface (𝑤𝑏) and ground 
water (𝑤𝑔) sources. Green water consumption (𝑔) in agricultural may increase deprivation, and hence increase water 

scarcity impacts, by reducing available surface and ground water. Lags in renewal and return rates to ground water sources 
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may increase future deprivation damages from ground water withdrawal compared to surface withdrawal. Water quality 
impacts sources from return of non-consumed withdrawn water not shown. 

A potential simple method to include green water consumption is in the term 𝑊𝐷𝐹𝑖, since total 

water availability is reduced. The effect on groundwater withdrawal would be more complicated 

because of lag (determined by the groundwater recharge rate). 𝑊𝐷𝐹𝑖 could be improved in its 

contextual and temporal representation. Models such as WaterGAP2 can provide estimates of green 

water run-off, ground water recharge, surface flows, and storage [16]. 

Damage from future water deprivation due to water consumption in the present requires the 

recalculation of (3) under future conditions as described, and then discounting the future costs to 

present. The uncertainty in social and environmental conditions can create large uncertainty in the 

future economic impacts [10]. 

2.5 Calculation and uncertainty 
The components of (3) have variation across countries, but also potentially uncertainty in the 

amount of malnutrition and income loss caused, and their costs. 

2.5.1 Water deprivation component 
The WDF (water deprivation factor – the portion of blue water withdrawn that results in blue water 

deprived to agricultural user of the water resource) calculated in [11] is spatially explicit, up to 

country level and where data is available up to major watershed level (watersheds in the WaterGAP2 

model [16]). WaterGAP2 was used to estimate the WaTer Availability (𝑊𝑇𝐴𝑘) in a watershed 𝑘 as 

the ratio of the total annual withdrawal by agricultural, industry and household users from total 

annual hydrological availability. WTA introduces a dependence on total withdrawals in a catchment. 

To capture the coupling between seasonal changes in water use by the sectors with variation in 

hydrological availability, WTA was multiplied by factor based on the standard deviation in monthly 

precipitation over the watershed (or its root in water catchments with significant blue water 

storage). To renormalize this to a value between 0 and 1, a logistic transform was used. This 

procedure, from [11], derived a number Water Stress Index (𝑊𝑆𝐼𝑘) between 0 and 1 that is meant to 

represent: if m3 blue water is withdrawn from blue water sources in catchment 𝑘, then 𝑊𝑆𝐼𝑘 m3 of 

blue water is deprived (in the present or at some later time) from an agricultural, household, or 

industry user of blue water from catchment 𝑘. There is no temporal representation in [11]. 

Multiplying 𝑊𝑆𝐼𝑘 by the proportion of agricultural use versus total use (in the present) is the value 

𝑊𝐷𝐹𝑘. [11] derived water use from the spatially explicit calculation in [15]. 

Deprived m3 water in a catchment is derived in [11] from water scarcity and not estimated nor 

modelled based on observed quantities of deprivation, making it difficult to estimate uncertainty 

and understand the variance in Prevalence of Undernourishment (PoU) caused by deprived m3 water 

in a catchment. Potential uncertainty in deprived water to an agricultural user can come from (a) 

proportion of deprived use amongst the three users (households, agriculture and industry), (b) 

spatial variation in withdrawal, and (c) temporal variation in withdrawal, total use, and total 

hydrological availability: 

a) The proportion of agricultural use versus total use is taken as the probability that the 

deprived user will be an agricultural user. Fluctuation in agricultural use within a catchment 

over time and measurement of agricultural use creates uncertainty in 𝑊𝐷𝐹𝑘. Markets or 

regulations in the catchment prioritising industry and household use as more valuable could 

change the likelihood that the user is agricultural. Industry sectors generally outcompete 

agriculture for purchasing local water rights [13, 17]. The present proportion of agricultural 
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use to other is a fair reflection of present priorities, so no uncertainty is assumed for present 

impacts when the water withdrawal 𝑤 is small relative to the total withdrawal in the water 

catchment. Impacts if the water were deprived in the present are used as a proxy for future 

impacts in our simple estimate. If 𝑤 is comparative to total withdrawal, then the 

dependency of 𝑊𝑆𝐼𝑘 on 𝑤 could change priorities of use, increasing the proportion of 

deprivation for agricultural users. 

b) It is assumed that the water deprivation from the water withdrawal occurs randomly 

anywhere in the catchment in [11], and that all agricultural users are homogenous (identical) 

and identically distributed in the catchment. Spatial heterogeneity in agricultural use and 

deprivation would introduce uncertainty in the loss of crop production. As 𝑤 increases then 

water deprivation increases an increasing number of agricultural users become deprived and 

the crop loss would tend toward the average of users. This uncertainty would decrease, but 

the uncertainty in (a) would increase. 

c) It is uncertain when in the year the withdrawal occurs and how that matches with 

interannual variability, inter-monthly use and availability (including storage), and damage to 

water resources. Multiplying a random variable distribution by relative amount of 

withdrawal over months of the year against interannual variability and inter-monthly use 

and availability (including storage) and vulnerability of the water resource would better 

reflect this uncertainty than multiplying WTA by the standard deviation in precipitation over 

the watershed. Temporal variation of deprivation over years would require the modelling 

discussed in Section 2.4.1 above. Uncertainty in the future year of deprivation is modelled by 

uncertainty in the discount factor 𝜌𝑖. 

Since the uncertainties in (b) and (a) are related as 𝑤 increases, independence of their effects is not 

clear, and it is not a simple conclusion that 𝑊𝐷𝐹𝑘 as derived above is the average amount deprived 

to an agricultural user in the catchment. Data was not available to model the uncertainties explicitly 

and include the dependence on 𝑤 (the quantity of blue water withdrawal) in 𝑊𝐷𝐹𝑘. 

For use in equation (1) (the use of 𝑊𝐷𝐹𝑘 in equation (2) is described below) the water withdrawal 

quantity is expressed as water withdrawal in a country 𝑖. It is uncertain which catchment withdrawal 

is from and hence which water resources may be damaged by withdrawal. Averaging across the 

catchments assumes the water withdrawal is taken in equal proportions from each catchment. 

Unless it is known which catchment the water withdrawal is from (in which case a study should use 

𝑊𝐷𝐹𝑘), this introduces uncertainty in the factor 𝑊𝐷𝐹𝑖 used in equation (1). Because of the 

interaction between (a) and (b) as the size 𝑤 increases, this uncertainty should be adjusted to the 

study. Lifecycle analysis studies using the marginal costings of water where catchment of withdrawal 

is not known should model this uncertainty as an approximately normal distribution (distribution of 

average from 𝑤 experiments of a unit of blue water withdrawn in randomly chosen Bernoulli trials 

with outcomes {0, 𝑊𝐷𝐹𝑘} and probability 𝛾𝑖,𝑘, where 𝛾𝑖,𝑘 is the proportion of agriculture users of 

catchment 𝑘 in country 𝑖). 

In equation (2) we derive the value for 𝑊𝐷𝐹𝑖  from 𝑊𝑆𝐼𝑖  in the dataset of [11] and the proportion of 

agricultural use of surface and groundwater withdrawals for country 𝑖 from AQUSTAT3. Even though 

a single value is used for 𝑊𝐷𝐹𝐼 it is a random variable, the distribution of which is yet to be 

 
3 An alternative to [9] with a spatially explicit data set is called water depletion 
http://www.earthstat.org/water-depletion-watergap3-basins/  

http://www.earthstat.org/water-depletion-watergap3-basins/
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determined and would depend on the context and magnitude of the withdrawal. This uncertainty is 

reflected partly in the lognormal fit of (1) and (2) as products of random variables in Section 2.6. 

For greater spatial resolution the reference [12] has an alternative 30 x 30 arcmin grid of irrigated 

water use (WC_IRR,CURR) and calculates calorie reduction from deprived irrigated water. Calorie 

intake/capita against ppl malnutrition (or direct to DALYs) could be an alternative model for the 

following. 

2.5.2 Malnutrition damage costs from water deprivation 
The term 𝐷𝐹𝑖 from [11] can be written as the partial rate of change of DALYs per annum per capita 

(DALY yr-1 capita-1), which we obtained from (WHO 2019, energy-protein malnutrition), against the 

prevalence of undernourishment 𝑃𝑜𝑈𝑖  for country 𝑖 (ppl yr-1 capita-1). There are enough data points 

for countries (148) to perform an implied quadratic surface fit from reference [11] of DALY yr-1 

capita-1 as a function of PoU and HDI (0 ≤ 𝑃𝑜𝑈 ≤ 1, 0 ≤ 𝐻𝐷𝐼 ≤  0.89), see Figure 2, 

DALY/yr/capita(𝑃𝑜𝑈, 𝐻𝐷𝐼) =  𝛽1 + 𝛽2 ⋅ 𝑃𝑜𝑈 + 𝛽3 ⋅ 𝐻𝐷𝐼 + 𝛽4 ⋅ 𝑃𝑜𝑈 ⋅ 𝐻𝐷𝐼 + 𝛽5 ⋅ 𝐻𝐷𝐼2 . 

The r value of the Maximum Likelihood Estimate (MLE) fit of the surface when HDI <= 0.89 is r=0.83. 

HDI is a primary explanatory factor for when undernutrition in a population translates into 

preventable disease and death [18]. Linear interpolation between 0.89 < HDI <=1 can be used to 

extend the surface. However, since PoU is very low when HDI > 0.89, we take 𝐷𝐹𝑖= 0 for HDI >=0.89 

following [11] (the reference [11] uses data from 2009, we used data from 2019). Data on Mali and 

North Korea were excluded as outliers from the fit. When HDI < 0.89, then an estimate for 𝐷𝐹𝑖  is the 

partial derivative of the fitted surface 

𝐷𝐹𝑖 =
𝜕 DALY/yr/capita

𝜕𝑃𝑜𝑈
(𝑃𝑜𝑈𝑖 , 𝐻𝐷𝐼𝑖) =  𝛽2̂ +  𝛽4̂ ⋅ 𝐻𝐷𝐼𝑖, 

where the values 𝛽2̂ and 𝛽4̂ are the MLE parameters. The partial derivative can be seen as the slope 

of the lines in the DALY/yr/capita and PoU plane in the second panel of Figure 2. The dependence on 

HDI changes the slope. Figure 2 also shows that linear regression of DALY/yr/capita against PoU (as 

done in [11]) without factoring over HDI overestimates by an order greater than 2 the value of the 

partial derivative 𝐷𝐹𝑖. 

Uncertainty in the value of 𝐷𝐹𝑖  derived from model fitting was not examined in [11]. For an 

uncertainty estimate of 𝐷𝐹𝑖  when HDI < 0.89 we used a Bayesian regression on the parameters of 

the surface fit. Residuals on the MLE surface fit were fitted to different distributions for HDI < 0.625, 

0.625 <= HDI <0.75 and HDI>=0.75 due to heteroscedasticity in the residuals in HDI as seen in Figure 

11 (larger errors as HDI decreases in the left panel). Three distributions of residuals for the different 

intervals of HDI (right panel of Figure 11) were used to characterise the shape of likelihood functions 

for updating priors on [−1,1]5 for the parameters 

 𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) 

in the quadratic surface fit (0 ≤ 𝑃𝑂𝑈 ≤ 1, 0 ≤ 𝐻𝐷𝐼 ≤  0.89). Priors were uniform but constrained 

to reflect the beliefs: 𝛽2 ≥ 0 (the belief that increase in PoU is certain to increase DALYs from 

malnutrition at all levels of HDI), 𝛽3 ≤ 0 (the belief that increase in HDI is certain to decrease DALYs 

from malnutrition at all levels of PoU), 𝛽4 ≤ 0 (the belief that increase in HDI and decrease in PoU 

simultaneously will decrease DALYs), 𝛽5 ≥ 0 (the belief that an accelerating rate of DALYs from 

malnutrition as HDI decreases is certain). 
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This approach may be summarised as 𝛽 is a random variable representing uncertainty in the value of 

𝐷𝐹𝑖  derived from a model of the observed (DALY yr-1 capita-1 malnutrition, PoU, HDI) triples in 2019. 

A joint distribution on 𝛽 (derived from the Bayesian regression method described) represents the 

probability that the observed values of (DALY yr-1 capita-1 malnutrition, PoU, HDI) could, up to 

random errors, have resulted from the relationships between DALY yr-1 capita-1 malnutrition, PoU, 

and HDI described in the model 𝛽 (instead of the MLE model). The variables (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) are 

strongly correlated in fitting a quadratic model (there is a lot of uncertainty with the data presented 

whether, at lower levels of HDI and higher levels of PoU, the degree to which HDI or PoU is the 

primary factor in malnutrition resulting in DALYs), therefore the joint distribution on the parameter 

space should be sampled and not the marginals in 𝛽2 and 𝛽4 estimated separately. 
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Figure 2: Fit of quadratic surface between DALY/yr/capita, prevalence of undernutrition PoU, and human development 
index HDI, with 2019 data from 148 countries. 

1000 samples of 𝛽2 and 𝛽4 were drawn from a joint sample of 𝛽, providing 1000 samples for  

𝐷𝐹𝑖 =  𝛽2 + 𝛽4 ⋅ 𝐻𝐷𝐼𝑖. 

The Bayesian estimates compared to the MLE values of 𝐷𝐹𝑖 for representative countries in HDI 

bands are shown in Figure 3, Figure 4 and Figure 5. At higher HDI the Bayesian estimate of the 

attribution of DALYs to percentage of the population suffering malnutrition underestimates the 

Ordinary Least Squares (OLS) MLE estimates (the surface fit in Figure 2). The increasing influence of 
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higher HDI on reducing the chance of DALYs in the presence of malnutrition in the data is reflected in 

the Bayesian estimates by local quadratic curve fitting in the HDI bands in Figure 11 and modelling 

positive skew in residuals as HDI increased, both of which the OLS MLE fit does not account for. The 

sharp distinction between residuals for HDI less than or greater than 0.75 (left panel of Figure 11) 

was smoothed by interpolating over the band 0.7 < HDI < 0.8. 

 

Figure 3: the factor 𝐷𝐹𝑖 in the estimation of the costs of malnutrition due to water deprivation in 9 example countries HDI < 
0.625, following [10]. Uncertainty and adjustment in the OLS MLE values (dashed lines) comes from uncertainty in model 
fitting and heteroscedasticity in HDI of residuals (Figure 11). HDI ranges from lowest HDI in the top panels to those 
countries with HDI closest to 0.625 in the bottom panels.  Heteroscedasticity in HDI for residuals (using is a linear trend in 
HDI for variance of residuals within the region HDI < 0.625) can be observed in the shift of central mass above OLS MLE to 
below OLS MLE values as HDI increases (from low HDI in top panels to higher HDI in lower panels). From the fit, the mean 
rate in Niger (HDI 0.394), for example, is 10 DALY for every 1000 ppl undernourished, and Ghana (HDI 0.611) is 4.5 DALY per 
1000 ppl undernourished.  

Uncertainty estimates are therefore based on the residuals of the fit of the surface used in the 

methodology of attributing water withdrawal to DALYs in [11]. It is assumed that other countries 

represent variance and hence uncertainty in 𝐷𝐹𝑖: if 2019 were to be repeated in a statistical 
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ensemble, then variation of underlying factors outside of HDI (and uncertainty in the determination 

of HDI) would change the attribution of prevalence of undernutrition to DALYs yr-1 capita-1 from 

protein-energy malnutrition. Only data from 2019 was used, the posterior joint distributions of 𝛽 

could be updated from data triples in previous years (potentially sharpening the uncertainty 

estimate), under the assumption that there is no information loss from previous years (that is, past 

relationships between DALY yr-1 capita-1 malnutrition, PoU, and HDI are still valid for the present). 

 

Figure 4: estimate of the factor 𝐷𝐹𝑖 in the costs of malnutrition due to water deprivation in 9 example countries 0.625 < HDI 
< 0.75 with HDI increasing from top left to bottom right. The increasing influence of higher HDI on reducing the chance of 
DALYs in the presence of malnutrition in the data is reflected in the Bayesian estimates by local quadratic curve fitting and 
modelling left skew in residuals as HDI increased, both of which the OLS MLE estimates (dashed) do not accounted for in the 
data. 
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Figure 5: estimate of the factor 𝐷𝐹𝑖 in the costs of malnutrition due to water deprivation in 9 example countries 0.75 <= HDI 
< 0.89 with HDI increasing from top left to bottom right. The influence of higher HDI on reducing the uncertainty in residuals 
(left panel Figure 11) results in distributions with less variance. 

The rate 𝐸𝐹𝑖 from [11] is meant to attribute a unit of deprived blue water to agriculture to an 

amount of reduced food production and then to the number of people experiencing malnutrition 

because of that lost food production. The value 𝐸𝐹𝑖 is estimated in [11] by 

𝐻𝐷𝐹𝑖

𝑊𝑅𝐼𝑖
 

where Water Requirements Indicator 𝑊𝑅𝐼𝑖 = 1300 m3 yr-1 capita-1 deprived, and Human 

Development Factor 𝐻𝐷𝐹𝑖 is a factor representing the vulnerability of the country to deprived food. 

𝑊𝑅𝐼𝑖 was derived in ([19], p. 58) as a global estimate of the minimum amount of water required of 

agriculture over a year required to provide nourishment to an individual. The interpretation is that if 

1300 m3 of blue water was deprived, then 1 person’s worth of food for an adequate diet is deprived 

from the country (either directly from subsistence or domestic market, or through income loss). 
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According to [11] 1 person’s worth of food removed from production results in 𝐻𝐷𝐹𝑖 number of 

people malnourished. The motivation for 𝐻𝐷𝐹𝑖 is reasonable, that in countries with greater 

undernourishment and worse development, removing a certain amount of food will result in greater 

malnutrition and worse outcomes from malnutrition, but the derivation is rather arbitrary. It would 

seem an improvement to factor through the dietary energy deficiency per capita (𝑐𝑎𝑙) and the 

number of calories per capita lost through that deprived unit of blue water 𝑤: 

𝐸𝐹𝑖 =  
𝜕𝑃𝑜𝑈

𝜕𝑐𝑎𝑙
⋅

𝜕𝑐𝑎𝑙

𝜕𝑤
 

The partial derivative of the FAOs prevalence of undernourishment 𝑃𝑜𝑈 to 𝑐𝑎𝑙 could be examined 

from the FAO distributions of dietary energy per capita and the undernourishment cut-off by 

removing calories equal to 1m-3 deprived from the distribution (there is some uncertainty where to 

remove the calories - shift the entire distribution back or lengthen the left tail). Economics would 

suggest removing calories from the bottom end of the distribution since higher income individuals 

can afford the higher prices from the reduced supply. The term 
𝜕𝑐𝑎𝑙

𝜕𝑤
 could be improved by spatially 

explicit modelling of water requirements for current irrigated crops and livestock production to meet 

calorie (or nutrient) needs. Areas of subsistence farming and/or severe food insecurity would be the 

most important areas for spatial distinction. Even though there are statistical errors in the 

determination of 𝑃𝑜𝑈𝑖  from survey data, the FAO does not publish the uncertainty nor the 

distributions. 

From lack of data we treat 𝐸𝐹𝑖 as in [11] and estimate uncertainty. Previous estimates of 𝑊𝑅𝐼𝑖 cited 

in [19] varied ±10%. We uniformly vary 𝑊𝑅𝐼𝑖 over this range. The calculation of 𝐻𝐷𝐹𝑖 involved a 

quadratic fit of DALY/yr/capita values against HDI (the projection onto the DALY-HDI plane in Figure 

2), conditioned on certain knowledge that 𝐻𝐷𝐹𝑖 takes the value 1 for HDI < 0.3. The residuals have 

the same heteroscedasticity observed in Figure 11, and a similar Bayesian quadratic regression (but 

conditioned on certainty of 1 for HDI = 0.3) was used to represent parameter, and hence model, 

uncertainty in the quadratic fit (Figure 12). 1000 samples were taken from the distributions for 𝐻𝐷𝐹𝑖 

and 𝑊𝑅𝐼𝑖 and provided 1000 samples for 𝐸𝐹𝑖. 

2.5.3 Cost of a DALY from malnutrition  
The simplest economic measure of DALYs is to multiply the effective years of life lost by productivity 

loss [20] [21]. The term 𝐶𝐹𝑖, in $US2020 PPP DALY-1, is from ILO modelled estimates of labour 

productivity for 2019 for country 𝑖 belonging to World Bank low-, lower middle-, upper middle-, and 

high-income bands. As discussed below, under discounting, the future productivity loss from water 

deprivation would be inflated by an estimate of productivity growth. However, change in HDI over 

time has not been accounted for in the term 𝐷𝐹𝑖  or 𝐸𝐹𝑖, which would reduce DALYs per person 

being undernourished and reduce the change in the rate of undernourishment produced by water 

deprivation. Therefore, we do not inflate and keep the simple structure of present damage as a 

proxy for future amounts. 

2.5.4 Income costs from crop losses from water deprivation 
The term 𝑉𝐹𝑖𝑛𝑐,𝑖 (US$2020 PPP / m3 deprived) of the value loss from crop loss in country 𝑖 due to a 

deprived unit of water is calculated from [13]. The reference [13] provides a global spatially explicit 

dataset, using data on 16 primary crops grown within a spatial cell to attribute the present 

production value of a unit of water deprived per soil type and per crop using a productivity function 

approach. The result is translated into monetary amounts using 2019 FAOSTAT farm-gate prices in 

international dollars. 
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Uncertainties come from: (a) variation in the crops impacted – a concentration of water withdrawals 

in the region of the highest value crops in country 𝑖 would result in a higher value per unit 

withdrawal than taking the average across all spatial cells for country 𝑖, (b) variation in farm gate 

prices, and (c) the impact of lost income. 

To account for (a) we could weight crop costs by the proportion of that crop grown in country 𝑖 

relative to the other 15 crops. The probability that a withdrawal in country 𝑖 is affecting crop 𝑗 is 

determined by the relative proportion of production in FAO 2019 data. Beyond this, without the 

water withdrawal unit 𝑤𝑖 being at a greater level of spatial resolution, and data on distributions of 

crops between catchments in a country, we cannot tell which crops may be affected by deprivation 

from a withdrawal. The assumption is the water deprivation occurs randomly in the country and will 

affect agriculture dependent on the water resource. 

For (b) we used data on farm gate prices from FAO. The estimates from series of farm-gate prices are 

weighted by the amount of domestic production (FAO food producer index). Farm gate-prices reflect 

an underestimate of losses. Using international commodity prices reflects the lost income to 

growers, but also other workers in the food system in that country (transportation, storage, trading). 

This overestimates the income effect, not all production is traded or bought by end users at 

international prices in-country. The law of one price does not apply because of market 

imperfections, especially in developing countries. We did not inflate the farm-gate prices to a future 

time when water deprivation creates the crop loss, we assumed the discounting term for growth of 

the non-agriculture parts of the economy dominates the increase in agricultural incomes. Therefore, 

we modelled uncertainty in income loss from crop loss by fitting the variation over time in the FAO 

producer price index for cereals, without modelling the trend. 

For (c) additional socio-economic effects, beside lost income, for those deprived by the withdrawal 

are not counted except for malnutrition. Subsistence farming and farming households with 

malnutrition are counted in the malnutrition costs from the withdrawal, not in income losses. 

Households without malnutrition experience only income effects from the withdrawal. Future 

equilibrium effects are also not considered: reduced supply increases prices and how much the price 

increase for the production that has not been deprived compensates for loss of income is uncertain. 

Modelling in [10] shows that, in some catchments, equilibrium effects may compensate entirely for 

lost income.  

The term 𝑉𝐹𝑖, when coupled with water deprivation, represents a damage cost to agricultural 

production. The benefit of the present agricultural production enabled by the water withdrawal 

factors into the social costs of the water withdrawal, not the damage cost. The reason why damage 

costs should not be offset by the production benefit to calculate a ‘net’ damage cost is that 

abatement of the water withdrawal may be cheaper than foregoing the agricultural production. 

Foregoing agricultural production is one abatement measure, and not necessarily completely 

contained in a marginal abatement curve. The ‘net’ damage cost is an underestimate of the social 

cost of the water withdrawal, see the further discussion under social cost of water below. 

For the uncertainty in (b) we used the country time series of the FAO food producer index from 1991 

to 2019. If 𝑚𝑝𝑖(𝑡) is the ten-year moving average of food producer index at year 𝑡 for country 𝑖, 

then 
𝑝𝑖(𝑡)

𝑚𝑝𝑖(𝑡)
− 1  reflects uncertain annual percentage variation in crop incomes around a decadal 

trend. The average 𝜂𝑖 of this random variable over ten years reflects uncertainty in decadal trends in 

food prices. We fit a multivariate normal distribution to the variation for all countries and treat it as 

the joint distribution of a random variable of percentage variations of annual farm-gate crop income 
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around the trend. Then we averaged across the values for each country from joint sampling of the 

multivariate normal.  We assume no autocorrelation in percentage variation over decades. This 

allows the simplification, since we take the decadal average, of ignoring short lag autocorrelation in 

annual residuals to estimate 𝜂𝑖. Normal approximation is valid for smaller percentage changes, we 

removed outliers in the FAO food producer index series using mean absolute deviation and would 

truncate 𝜂𝑖 ≥ −1 when required (no samples required resampling to implement truncation). 

We use 𝜂𝑖  to approximate variation around the trend of income lost to water deprivation over the 

period 2020-2100. Decadal variation is a useful approximation: without a more sophisticated 

temporal representation of impacts, the discounting, described below, prioritises impacts within the 

first few decades for a continuous process of surface water impacts, and once-off impacts from 

groundwater exhaustion are assumed to occur within the span of a decade. 

24 out of 182 countries considered did not have marginal water values from [13]. Most of those 

countries were island states, but the Republic of Congo, Equatorial Guinea, Liberia, Ireland and 

Iceland were not represented in the dataset of [13]. We used the Western Europe average as a proxy 

for Ireland and Iceland, and the Sub-Saharan African average as a proxy for the Republic of Congo, 

Equatorial Guinea, and Liberia. 33 countries out of 182 considered, representing <5% of global value 

of agricultural production, did not have any data points for the FAO producer index. No relationship 

could be found between standard deviation of residuals of producer prices on a regional basis, 

against development indicators such as HDI, GDP, nor drought indicators. The regional mean of the 

standard deviations was therefore used as an estimate for the 33 countries without data and 

represents underestimating uncertainty for 33 countries with missing producer index data. The 

covariance matrix of the 149 countries with data was inflated to a covariance matrix for 182 

countries by assuming no covariance for the 33 countries with missing data. 

A constant term 𝑉𝐹𝑖
0 for each country 𝑖 is given by the data set of [13] as the average farm-gate loss 

in 2019 due to a unit of blue surface or groundwater deprived. We cannot tell in which catchment 

deprivation is occurring without the withdrawal also having catchment level spatial resolution and 

we did not want to model this uncertainty since catchment level resolution may be available in many 

studies. Then 

𝑉𝐹𝑖 = (1 + 𝜂𝑖) ⋅ 𝑉𝐹𝑖
0. 

2.5.5 Estimating the prevalence of malnutrition in agricultural workers 
To estimate 𝛼𝑖, neither the FAO Proportion of Undernourishment (PoU) or Food Insecurity 

Experience Scale (FIES) indicators for all countries distinguish national malnutrition by household 

income level, nor the predominant household occupation. This would require re-assessment of the 

PoU or FIES using data at household survey level, which was not available. 

Instead, extreme poverty (<US$1.90 per day, World Bank) for agricultural workers was used as a 

proxy, and indicators from ILO and the World Bank for poverty combined to estimate the prevalence 

for agricultural workers. Extreme poverty is not a perfect proxy for undernourishment, income 

explains only about 50% of variation in malnutrition globally [22]. 

We estimate the percentage 𝛽𝑖 of extreme poverty for agricultural workers in a country 𝑖 and then 

adjust the resulting distribution for the relationship between extreme poverty and malnutrition to 

obtain an estimate of malnutrition. 

The ILO calculates the percentage of workers in extreme poverty for country 𝑖: 



Annex A 
 

24 

 𝑞𝑖,𝑤|𝑝 – percentage of workers in extreme poverty for country 𝑖, from ILO 

https://ilostat.ilo.org/topics/working-poor/  

We assume workers in agriculture have a greater rate of workers in extreme poverty than in the 

general economy, so we set 𝛽𝑖
𝑚𝑖𝑛 = 𝑞𝑖,𝑤|𝑝 . 

In order to underestimate marginal damage costs, we require an overestimate of the rate of 

agriculture workers in extreme poverty. To do this we use ILO and World Bank estimates: 

𝑞𝑖,𝑎|𝑤|𝑝 – percentage of agriculture workers among workers in extreme poverty for country 𝑖, from 

[23] and based on regional values. 

𝑞𝑖,𝑎|𝑤 – percentage of agricultural workers amongst all workers for country 𝑖, from ILO and World 

Bank https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS 

For 12 outlier countries the ratio 
𝑞𝑖,𝑎|𝑤|𝑝

𝑞𝑖,𝑎|𝑤
 was greater 1 . Except for those, using the regional estimates 

in [23] can then provide an estimate for the extreme poverty percentage in agricultural workers that 

is larger than the general rate: 𝛽𝑖
𝑚𝑎𝑥 =

𝑞𝑖,𝑎|𝑤|𝑝

𝑞𝑖,𝑎|𝑤
⋅  𝛽𝑖

𝑚𝑖𝑛 .  

The 12 outlier countries had either very low poverty rates or very high poverty rates with very high 

rates of workers in agricultures. In the outlier case  
𝑞𝑖,𝑎|𝑤|𝑝

𝑞𝑖,𝑎|𝑤
 had a low mean absolute deviation of 0.02 

below 1. To underestimate damage costs however, for outliers we chose for 𝛽𝑖
𝑚𝑎𝑥 the moderate 

poverty headcount percentage (<US$3.20 per day, World Bank) as an overestimate of the 

percentage of agricultural workers in extreme poverty. 

The estimate for 𝛽𝑖 is a random variable uniformly distribution over the interval [𝛽𝑖
𝑚𝑖𝑛 , 𝛽𝑖

𝑚𝑎𝑥]. 

We use the relationship between malnutrition and extreme poverty for the general population to 

estimate the random variable 
𝛼𝑖

𝛽𝑖
 . Data for the prevalence of undernourishment (PoU) between 2000 

and 2018 is available from FAO https://data.worldbank.org/indicator/SN.ITK.DEFC.ZS, data on 

extreme poverty (PoV) for country 𝑖 amongst the total population between 2000 and 2018 is 

available from the World Bank https://data.worldbank.org/indicator/SI.POV.DDAY. From a 

scatterplot of all obtained pairs of PoU and PoV values, the variation is 0.53, indicating that PoV 

‘explains’ 50% of the variation in PoU. To obtain a finer relationship we excluded the minimum 

values of 2.5% for PoU and PoV values < 1% and grouped the country data points into HDI tiers: very 

high human development (0.8-1.0), high human development (0.7-0.8), medium human 

development (0.55-0.7), and low human development (below 0.55). The explanation within HDI tiers 

is weaker, with only 11% of the variance in PoU explained by PoV in the low human development 

tier. Therefore, we do not use a single OLS linear regression estimate for PoU against PoV or 

regression within HDI bands. Dividing the PoU values by PoV values (each tier had over 60 data 

points) is treated as a sample from the distribution 
𝛼𝑖

𝛽𝑖
 for a country 𝑖 with HDI belonging to a HDI tier. 

Distributions were fitted to the samples to estimate the distribution of the uncertain variable 
𝛼𝑖

𝛽𝑖
  by 

minimising the Akaike information criterion amongst a common set of distributions. For the 3 lowest 

tiers, a lognormal distribution provided the best fit up to statistical significance. For the very high 

HDI tier, a Weibull distribution provided the best fit. 

The product of 
𝛼𝑖

𝛽𝑖
 and 𝛽𝑖 gives an estimate for the uncertain value 𝛼𝑖, distributed according to the 

product distributions of the distributions for 
𝛼𝑖

𝛽𝑖
  and 𝛽𝑖. Samples of the product > 1 were assumed, 

https://ilostat.ilo.org/topics/working-poor/
https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS
https://data.worldbank.org/indicator/SN.ITK.DEFC.ZS
https://data.worldbank.org/indicator/SI.POV.DDAY
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for the simple purpose of overestimation of double counting, to indicate 𝛼𝑖 = 1 and all agricultural 

workers were experiencing malnutrition. 

2.5.6 Estimating the present value of water deprivation losses 
Our method uses losses if the deprivation of water occurred in the present as a proxy for future loss 

from deprivation of water at a future time. To understand the present value of that future loss 

requires a discounting term. The component 𝑊𝐷𝐹𝑖  from [11] has no temporal component for the 

deprived amount of water. An examination of the effect a water withdrawal would have on water 

resources in each catchment would be required to understand the temporal distribution of 

deprivation (withdrawals increasing water salinity in the present or near-term may reduce available 

water starting in the present, whereas deprivation from a non-renewing aquifer may be delayed 

until the aquifer is effectively drained physically or the quality of water degrades such that 

agricultural use is deprived). 

Our estimate of 𝜌𝑖 is a random variable on [0,1] discounting impacts for an unknown amount 𝑊𝐷𝐹𝑖 ⋅

𝑤𝑖 of water deprivation between 2020 and 2100. The size of the withdrawal is unknown without 

specific quantity data – we are developing uncertainty in marginal damage cost to be applied across 

different studies. The proportion of the withdrawal from a surface source or a groundwater source is 

unknown: (a) we assume that the proportion for withdrawals tends to the observed proportion for 

total withdrawals in a country as the size of the withdrawal increases. When the impacts occur is 

unknown: (b) we assume the impacts occur between 2020 and 2100 at a constant rate of 

deprivation that was linked to the 𝑊𝑆𝐼𝑖 of country 𝑖. Those countries with greater water stress and 

greater groundwater withdrawals were assumed to be more likely to have water deprivation 

impacts sooner than those without. 

For (a): first 𝑤𝑖 is chosen randomly between 0.1% and 10% of the total freshwater agricultural 

withdrawal (𝑇𝑈𝑖) for country 𝑖 in 0.1% intervals (AQUASTAT). 

The proportion of 𝑤𝑖 withdrawn from a surface or groundwater source is determined by a Bernoulli 

experiment with 1000*(
𝑤𝑖

𝑇𝑈𝑖
) trials (which allocates 0.1% of total withdrawal per trial) and success 

given by the ratio of surface water withdrawals against total withdrawals for country 𝑖. The ratio is 

from AQUASTAT for all uses and is assumed to hold for agricultural uses. 63 out of 178 countries 

with total withdrawals in AQUASTAT did not have data on total surface to groundwater withdrawal. 

The estimate of 42% of all withdrawals of groundwater used as irrigation is the ratio for the 

countries without data [24]. 

For (b): if 𝑠𝑖,𝑔 is the proportion withdrawn from a groundwater source, a Poisson process with rate 

𝜆𝑖 =
200 ⋅ 𝑊𝑆𝐼𝑖 ⋅ (1 + s𝑖,𝑔  ) 

2100 − 2020
  

allocates deprivation amounts to individual years. With extreme water stress 𝑊𝑆𝐼𝑖 = 1 and total 

reliance on groundwater 𝑠𝑖,𝑔 = 1, then, on average, 100% of the impacts will occur between 2020 

and 2040 at an average rate of 5% per year. With moderate water stress 𝑊𝑆𝐼𝑖=0.5 and equal 

reliance on groundwater 𝑠𝑖,𝑔 = 0.5, on average, 100% of impacts will occur between approximately 

2020-2070 at 1.875% per year. With moderate water stress and no withdrawal of present 

groundwater, then impacts occur, on average, over the period 2020-2100 at 1.25% per year. This 

allocation from sampling from a Poisson process provides weights to years by allocating percentages 

of water deprivation to future years. 
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The sampled weights for the years  𝑡 ∈ [2020,2100] are multiplied against the sequence 

(1 + 𝑑𝑖)2020−𝑡 and summed. This provides a distribution for the random variable 𝜌𝑖. Here 𝑑𝑖  is a 

long-term GDP growth rate for country 𝑖. 

For 𝑑𝑖  we used the future GDP growth projections for the 5 Shared Socioeconomic Pathways (SSPs) 

over the periods 2020-2040 and 2040-2100 from Table 3 in [25]. [25] uses its own division of 

countries into high, medium, and low income. Countries were assigned the GDP projections for their 

income groups. The SSP was sampled at random and represents uncertainty in 𝑑𝑖  (representing 

minimal information, or a lack of knowledge, on which SSP would be the future). An alternative 

dataset for uncertainty in long-term GDP projections is [26]. 

The above procedure generated 186 independent random weights over future years for local impact 

from deprivation in the country’s water resources. In each sample from 1000 joint samples of the 

186 weights, the same randomly chosen SSP was applied across the 186 country samples (all 

countries share the future assumed for that sample). In terms of sensitivity, the different long-term 

interest rates in the SSPs between high income and low-income countries and low groundwater use 

against high groundwater use can halve the mean value and standard deviation of 𝜌𝑖. Present water 

stress and the proportion of agricultural use of water create more variation between countries than 

discount rates. 

2.6 Fitting the damage costs of water withdrawal 

2.6.1 Results 
The components of the equation (3) were derived, with uncertainty, in the previous section. The 

mean value of costs of deprivation from withdrawal US$2020 PPP m-3 withdrawn (equation 3) for 

158 countries where data was available is listed in Table 2 in Section 2.10. All tables are in Section 

2.10. Table 3 lists the malnutrition (equation 1) and income (equation 2) mean damages, without 

double counting correction and discounting, for comparison. Table 4 lists 17 countries where the 

malnutrition costs are estimated to outweigh the income costs from crop loss. The marginal costs in 

Table 2 vary greatly, even across similar countries, due to the many factors represented in equations 

(1)-(3) and discussed, water stress, cereal crop production, dependence of crop value on irrigation 

water from surface and groundwater sources (not desalination), and income and development, 

which are the three most sensitive factor with discounting rate, which is also linked to income and 

development, fourth. 

2.6.2 Box: “Hidden cost” of water withdrawal for agricultural use 
Table 3 includes a ‘total damage cost’ by multiplying the national marginal costs by total water 

withdrawals from FAOSTAT, and total damage cost as a percentage of agricultural GVA. These are 

presumptive figures for reference and should be used carefully in terms of comparison to national or 

the global economy given lack of consideration of social costs and second order effects for large 

withdrawals. Large withdrawals escalate the value of water resources and changing marginal costs 

provides socio-economic forces (economic equilibrium forces) to prevent further withdrawal – 

making the initial estimate of the assumed large quantity of extraction at the given marginal costs an 

overestimate. An environmental equilibrium would not care about human prices, in which case the 

large changes water resources may occur, but in that case the marginal damage costs are 

underestimated. Depending on which equilibria dominates and lag of the feedback of environmental 

change to socio-economic response, the ‘total cost’ figures are biased downwards or upwards. 

Graphics for countries facing the largest “hidden” water deprivation costs are shown in Figure 7. 
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It is less valuable to compare the marginal costs across countries, they represent primarily the 

externalised costs of water use for market corrections in the economies where the costs are borne. 

They are therefore more usefully compared against economic indicators of the same country. Table 

3 provides the amounts for Figure 7 and compares water damage costs against GVA of agriculture 

for that country. The data from [13] demonstrates a large variation in the value of water as a factor 

of productivity across crop types and therefore across countries that also vary in their production 

amounts of the 16 crop types considered in [13]. Large production of rice and soy in Asia, combined 

with water stress, large amounts of water used in current production practices, and higher farm-gate 

prices in PPP terms, are reflected in the high damage costs for Japan and China. 

Figure 8 to Figure 10 show the marginal cost distributions for some examples from Table 2. In terms 

of global totals of “hidden cost”, then the distributions of the sum of the country costs in Table 2 are 

shown in Figure 6 for combined values, and for a comparison of malnutrition and income loss. 

There is a large variation in the shape of the distributions across countries, from various factors such 

as: malnutrition costs which create positive skew; and income losses which we approximated by 

normally distributed residuals to capture correlation in farm-gate price variation. Generally, 

malnutrition losses dominate at low HDI (Niger, Senegal), with mixed shapes at mid HDI (India, 

Bolivia) and normal shapes where income loss dominates at high HDI. Where HDI is high and 

agricultural use of blue water is low, discount rates from the SSPs over the long-term can dominate 

the uncertainty, resulting in three peaks in samples (Croatia). These artefacts of modelling and 

demonstrate the variation in the different components of equation (3) across countries. The samples 

represent an exploration of the spread of values, greater understanding the shape of probable 

impacts at present value with modelling requires including coupled biophysical and economic 

models. 

2.6.3 Parametric and non-parametric data for risk assessment 
Only some of the terms in equation (3) have uncertainty estimates, we consider the other terms 

uncertain, but do not have forms by which the uncertainty can be specified. Generally, as a product 

of four random variables in equation (1), and three random variables in equation (3), by the central 

limit theorem the shape of the estimate of 𝑀𝐷𝐶𝑚𝑎𝑙,𝑖 using [11] would be approximately lognormal 

independent of the shape of the uncertainty in the other factors. The parameters of the lognormal 

fit would be affected by the fit of the other parameters. Uncertainty in the other terms would 

increase the variance in the lognormal fit, so we still consider that the uncertainty derived for 

𝑀𝐷𝐶𝑤𝑎𝑡𝑒𝑟,𝑖 from sampling, given the data available and employing the present methodologies of 

[11] and [13], is likely an underestimate of tail uncertainty. 

The sampling data, available in the full SPIQ dataset, provides a non-parametric form for risk 

assessment. 

Parametric forms of distribution are easier to disseminate. A parametric form, using lognormal 

distributions given the mathematical rationale above, is informed by the mean and standard 

deviation from the sampling. Table 2 lists the lognormal fits in the last 2 columns. Conceptually, we 

understand the damage costs of water as a joint distribution across countries. Table 2 therefore 

describes the marginals for individual countries. The correlation matrix from the sampling data can 

be used to generate the explicit formula and samples for multivariate lognormal distribution 

representing the joint distribution of marginal damage costs. The correlation matrix is available in 

the SPIQ dataset. 
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2.6.4 Box: Aggregating damage costs across countries 
We emphasise that the joint distribution should be used when adding totals across countries. 

Studies of subsidy repurposing, dietary change, and food waste make changes to impact quantities 

such as water withdrawals and nitrogen emissions across countries, and when aggregating the 

effects, the joint distribution should be used to assess risk. Correlations can increase the probability 

of extreme costs greatly, and so sampling independently from marginals can dramatically 

underestimate economic risk of food system impacts. 

2.6.4 Improvements 
This study was framed on using existed datasets and methods to estimate the marginal damage 

costs of water for individual countries. The approach from [11] is highly cited, and implemented in 

Lifecycle Impact Assessment software and standards. It does, however, introduce the derived 

quantity of deprived water without any consideration in temporal aspects of impact. Considering the 

surface DALY/yr/capita against PoU, HDI, WDF*, PROD, and w, where WDF* represents observable 

proxies for water scarcity such as total hydrological flow but is not a function of w, PROD is crop 

production, and w is water withdrawal, could yield an improved analysis and test the validity of the 

form of the equation in (1). The components PoU, HDI, WDF*, and PROD could be given a reasonable 

time dependence by attaching hydrological and use changes in WDF*, use changes in PROD, and 

socioeconomic changes in HDI and PoU from scenarios. The rationale for equations like (1) is that 

information is gained (uncertainty reduced) by the knowledge of terms in the chain rule expansion. 

Including PROD explicitly would also increase consistency between the terms 𝑀𝐷𝐶𝑚𝑎𝑙,𝑖 and 

𝑀𝐷𝐶𝑖𝑛𝑐,𝑖. 

2.7 Double counting and correlations with other impact quantities 
The joint distribution of marginal damage costs for water withdrawals across 158 countries (sampled 

or parametric) described in Section 2.6 and earlier sections considered double counting and 

correlation within marginal damage costs for agricultural freshwater withdrawal. 

Correlation of marginal damage costs of other quantities of impact and sensitivity analysis is 

described in Annex B. We discuss the interactions of the impacts of water withdrawal with the other 

quantities here and estimate block correlation coefficients for Table 3 in Annex B. 

2.7.1 Interaction with marginal costs of other impact quantities 
The interaction between the quantities associated to impact of current activities need to be 

separated from the interaction between marginal costs given a unit change in either quantity. 

Modelling, or the method that determines quantity changes, would keep track of joint changes in 

quantities. 

GHG marginal costs and marginal costs of water withdrawal 

Joint climate and water modelling shows that present GHG emissions, through temperature 

increases and change in precipitation patterns, will lead to increased water stress [2, 15, 27]. 

Economic damage from climate change will also impair HDI increase [28], which factors into 

marginal increases in undernourishment and prevention of undernourishment leading to DALYs. 

Direct temperature damage to crops and soil, exacerbates the effects of water deprivation. For 

water stress, however, modelling found that socio-economic factors such as population growth 

caused larger variance in outcomes than climate change [15, 29], and uncertainty in climate effects 

[27]. We use a moderate positive correlation for the block correlation coefficient between marginal 

damage costs for ppl in extreme poverty and water deprivation in the future is more dependent on 

socioeconomic changes than climate change. 
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Land use marginal costs and marginal costs of water withdrawal 

Agricultural activities produce a conversion in land use and a change in ecosystem services. The land-

use conversion to irrigated agriculture in a water stressed catchment increases water stress. The 

economic benefits of agriculture can increase HDI and, depending on other socio-economic factors, 

result in reduction of rates of undernourishment and DALYS due to undernourishment. Increase in 

extent of agricultural land-use is not itself a strong determinant of HDI, so this negative correlation 

effect would generally be weaker than the positive correlation between a marginal increase in 

agricultural use and marginal increase in water stress. Not all countries experience water stress, so, 

for a block co-efficient, we use a weak positive correlation. 

Marginal costs of nitrogen emissions and marginal costs of water withdrawal 

With greater water stress the concentrations or exposure of nitrates in groundwater increase. 

Nitrates form only a small portion of the marginal costs of Nr emissions [30]. Water deprivation 

resulting in salination and other ecosystem damage will likely exacerbate the acidification and 

eutrophication of surface freshwater bodies from nitrogen deposition and direct run-off. Positive 

correlations in damages may only appear at threshold levels: water limitation without ecosystem 

damage would generally reduce biological growth, but removing N-limitation can sometimes 

counteract this (which leads to a negative correlation) [31]. Impacts from Nr emissions are short 

term unless they cause sustained change in biodiversity or ecosystems, which may then intersect 

with future water deprivation. Freshwater withdrawals would have to compare to green water flows 

to significantly increase concentration of run-off Nr in waterways, and this effect would only be a 

third order term. Increased crop prices under normal economic conditions creates increase in 

fertiliser use. However, this creates a change in the quantity of Nr emissions and only at third order 

terms would this effect the marginal damage per Nr emissions. We estimate therefore that 

uncertain crop prices in future decades very weakly interacts with present Nr emissions. Overall, 

assuming sustained nitrogen use and water stress, we use a weak positive correlation between 

marginal damage costs for nitrogen emissions and water withdrawal. 

Poverty marginal costs and marginal costs of water withdrawal 

Extreme poverty explains about 50% of malnutrition [22]. If poverty gaps are higher, then 

malnutrition will be more prevalent for the same water deprivation, including less income to import 

virtual water to counter crop loss. We would also expect an effect, through the relationship of HDI 

with the rate of DALYs from protein-energy malnutrition per undernourished people. The purely 

income component of the marginal damage costs for water is largest in upper-middle to high income 

countries where agriculture is a small component of GDP and less agricultural workers overlap with 

workers in extreme poverty. So marginal damage costs for water decouple from poverty at higher 

HDI, however the poverty gaps and impacts of poverty per person in poverty are increasing smaller 

as the decoupling occurs. We use a weak positive correlation for the block correlation coefficient 

between marginal damage costs for ppl in extreme poverty and water withdrawal. 

Chronic and Hidden Hunger marginal costs and marginal costs of water withdrawal 

DALYs per undernourished person are a component of the malnutrition associated to water 

deprivation. There would be a double counting effect if the derivation of the change in 

undernourishment quantity used in the marginal costs of chronic and hidden hunger included water 

deprivation. However, we need to consider temporal effects. Undernourishment occurs now from 

consumption now, but starvation occurs in the short term, and chronic and hidden hunger have 

health effects in the short and longer tem depending on the age distribution of the undernourished 

populations. The intersection between water deprivation in the future and calorie and marginal 

changes in consumption now is therefore in the intersection between long term effects of 
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consumption now and short term effects of water deprivation, as well as reduced access and quality 

of drinking water and sanitation in the future [32]. Generally, inadequte energy and nutrients intake 

will exacerbate existing health conditions [33], if the DALY is indicating disease and not life lost in the 

temporal gap between the two effects. Uncertainty in the temporal intersection of effects and the 

larger influence of future socio-economic effects on undernourishment compared to water 

deprivation, means that we use a weak positive block correlation between the marginal damage 

costs of water withdrawal and chronic and hidden hunger from current consumption. 

Dietary risk marginal costs and marginal costs of water withdrawal 

There is no component in the marginal damage costs of water associated to dietary risk factors in 

the Global Burden of Disease (GBD) study besides general undernourishment. Future poor health 

from a marginal change in lower consumption of fruits, vegetables and whole grains now, and higher 

consumption of sugar and salt now, would need to intersect with and exacerbate health effects from 

future undernourishment or future change in crop prices. Crop prices in the future effect future 

consumption and can be assumed to be decoupled from consumption now. With the greatest 

burden of dietary risk factors in mid to higher income countries, the intersection with future 

malnutrition seems remote. So we find no significant block effect between impacts from unit of 

water withdrawal now and health impacts from marginal dietary changes now. 

2.7.2 Quantification of correlations 
 

Correlation P  

Strong negative -0.8  

Moderate negative -0.5  

Weak negative -0.2  

None 0  

Weak positive 0.2  

Moderate positive 0.5  

Strong positive 0.8  

 

Table 1: Block Pearson correlation coefficients between uncertain marginal damage costs 

Costs of… 

GHG 

emission Water use Land use 

Nr 

Emissions Poverty NCDs 

Chronic & 

Hidden 

Hunger 

Water use/ 

depletion +0.5  +0.2 +0.2 +0.2 0 +0.2 

 

2.8 Social costs of water 
The social cost of water, that is, the optimal water withdrawal that maximises the social surplus from 

the consumption of that water, is difficult to calculate. 

A simple estimate would compare damage costs (the externalities of withdrawal) compared to the 

benefit of the production enabled by withdrawal at, or transported from, the location of withdrawal. 
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In water stressed areas, with competition between water uses and potential high social costs from 

impacted food production, human health and sanitation, the social cost may be positive. In areas of 

abundant water, the damages will more likely be less than benefits.  

Like the discussion under the social costs of nitrogen, there is potential ambiguity in the social costs 

if the units are not defined consistently. The social costs of unit of water consumed uses the point of 

consumption for evaluation of benefits and costs. Where water has been transported some distance 

from multiple sources, or even whether embedded water is considered to be consumed at the point 

of embedding (e.g. production), or consumed when lost in a later process (e.g. eating), then mapping 

between the locations of withdrawal and proportions of water withdrawn for a unit of water 

consumption is a complicated tasks. It is also complicated to understand the relationship between 

abatement of the consumption quantity (i.e. eating less red meat and dairy) in relation to abatement 

measures of water withdrawal. 

For tractability, a unit of water at location withdrawn is more derivable and applicable for a general 

dataset of damage costs. Actors in the food system can estimate where the water withdrawal has 

occurred for the consumption in their activities. 

The social cost of water is underestimated without the full range of abatement measures and 

exclusive damages being considered.  The social cost of water is overestimated when damages 

include double counting (are not exclusive). Foregoing the benefit of the production enabled by 

withdrawal at, or transported from, the location of withdrawal is not necessarily the lowest cost 

abatement measure. Determining the social cost of water withdrawn at a particular location, which 

for pragmatism would be the catchment level, requires determination of abatement cost curves and 

the marginal abatement cost. Many abatement measures, including Water Use Efficiency (WUE), are 

abating water consumption. Understanding the full spectrum of abatement measures available to 

obtain the abatement curve at a point of withdrawal (which lists abatement measures by their least 

cost per international dollar to abate a unit of withdrawal) is complex. 

Dietary change can be considered a form of water-use efficiency, where the ultimate product is 

human diets of the same or greater utility to consumers. Saved consumption from dietary change 

would need to be traced back to the water withdrawn to produce foods – which has been done by 

models. 

At the other end of the spectrum of distance between withdrawal and consumption is shifting 

production (assuming same diet) so that less water is withdrawn. The present global distribution of 

crops are not optimal from the view of water availability [12], crop requirements, and economic 

return [13]. ‘Water sparing’ – a global redistribution of production to optimise water use would 

abate withdrawals at locations of scarcity.  However, the costs and political feasibility of shifting 

production face similar challenges to estimate as the costs and political feasibility of shifting 

consumption. ‘Water sparing’ also needs to match optimised redistribution of land-use and fertiliser 

use. 

The ‘true’ social costs of water are not discoverable, what is required are estimates which can 

sponsor economic action of appropriate magnitude. A useful estimate requires value of 

environmental flows, and local estimates of abatement costs. The present water withdrawal damage 

cost focusses on income losses, or near proxies to income losses, from crops in water scarce 

catchments. Abating by the simplest measures available, and used in some studies, which is the 

benefit foregone by production created from the withdrawal, leads to adding and subtracting 

potentially similar amounts. 
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Studies have used abatement costs of water withdrawal as proxies for the social cost of water. This 

likely significantly underestimates the value component of water in water scarce areas which is a 

component of the social cost. Marginal abatement costs only become substitutable for the social 

costs at the optimal level of withdrawal. 

2.9 Considerations for use 
Models may include estimates of water withdrawal on present or future irrigated agricultural 

production in catchments or lack feedback between water withdrawal and water limited production. 

In the absence of endogenous correction of agricultural production for water scarcity, then the 

valuations in [11] and [13] represent a first order correction. They can be applied to estimates of 

water withdrawal changes derived from production changes. Potential inconsistencies include: 

• costing the water withdrawal does not correct production or any of the other costs 

associated directly or indirectly to agricultural production, including 

• a different methodology used to calculate malnutrition effects from the endogenous 

calculation of agricultural production 

• potential double counting with the damage costs of poverty. 

 

  



Annex A 
 

33 

2.10 References 
 

1. Shiklomanov, I.A., World Water Resources at the Beginning of the 21st Century. 2003, 
Cambridge: Cambridge University Press. 

2. Schlosser, C.A., et al., The future of global water stress: An integrated assessment. Earth's 
Future, 2014. 2(8): p. 341-361. 

3. Falkenmark, M., Growing water scarcity in agriculture: future challenge to global water 
security. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences, 2013. 371(2002): p. 20120410. 

4. Mateo-Sagasta, J., et al., Water pollution from agriculture: a global review. Executive 
summary. 2017, Food and Agriculture Organization of the United Nations. International 
Water Management Institute.: Rome. 

5. EEA, Industrial waste water treatment - pressures on Europe's ennvironment, in EEA Report. 
2018, European Environment Agency: Copenhagen, Denmark. 

6. OECD, Pharmaceutical Residues in Freshwater, in OECD Studies on Water. 2019, OECD 
Publishing: Paris. 

7. Thebo, A.L., et al., A global, spatially-explicit assessment of irrigated croplands influenced by 
urban wastewater flows. Environmental Research Letters, 2017. 12(7): p. 074008. 

8. Rost, S., et al., Agricultural green and blue water consumption and its influence on the global 
water system. Water Resources Research, 2008. 44(9). 

9. Heinke, J., et al., Water Use in Global Livestock Production—Opportunities and Constraints 
for Increasing Water Productivity. Water Resources Research, 2020. 56(12): p. 
e2019WR026995. 

10. Dolan, F., et al., Evaluating the economic impact of water scarcity in a changing world. 
Nature Communications, 2021. 12(1): p. 1915. 

11. Pfister, S., A. Koehler, and S. Hellweg, Assessing the Environmental Impacts of Freshwater 
Consumption in LCA. Environmental Science & Technology, 2009. 43(11): p. 4098-4104. 

12. Rosa, L., et al., Global agricultural economic water scarcity. Science Advances, 2020. 6(18): p. 
eaaz6031. 

13. D’Odorico, P., et al., The global value of water in agriculture. Proceedings of the National 
Academy of Sciences, 2020. 117(36): p. 21985. 

14. Vollmer, D. and I.J. Harrison, H2O ≠ CO2: framing and responding to the global water crisis. 
Environmental Research Letters, 2021. 16(1): p. 011005. 

15. Vörösmarty, C.J., et al., Global Water Resources: Vulnerability from Climate Change and 
Population Growth. Science, 2000. 289(5477): p. 284. 

16. Alcamo, J., et al., Development and testing of the WaterGAP 2 global model of water use and 
availability. Hydrological Sciences Journal, 2003. 48(3): p. 317-337. 

17. Healy, J., For farms in the West, oil wells are thirsty rivals. The New York Times, 2012. 5. 
18. Gödecke, T., A.J. Stein, and M. Qaim, The global burden of chronic and hidden hunger: 

Trends and determinants. Global Food Security, 2018. 17: p. 21-29. 
19. Falkenmark, M. and J. Rockström, Balancing Water for Humans and Nature: The New 

Approach in Ecohydrology. 2004, London: Earthscan. 
20. Cleaver, K., N. Okidegbe, and E. De Nys, Agriculture and rural development: Hunger and 

malnutrition, in World Bank Seminar Series: Global Issues Facing Humanity. 2006, The World 
Bank: Washington, DC. p. 1-18. 

21. Global Panel, The Cost of Malnutrition: Why Policy Action is Urgent in Technical Brief. 2016, 
Global Panel on Agriculture and Food Systems for Nutrition: London. 

22. FAO, State of food insecurity in the world 2013: the multiple dimensions of food security. 
2013, Rome: Food Agriculture Organization of the United Nations. 

23. Castaneda, A., et al., Who Are the Poor in the Developing World?, in Policy Research Working 
Paper. 2016, World Bank: Washington, DC. 



Annex A 
 

34 

24. Döll, P., et al., Impact of water withdrawals from groundwater and surface water on 
continental water storage variations. Journal of Geodynamics, 2012. 59-60: p. 143-156. 

25. Leimbach, M., et al., Future growth patterns of world regions – A GDP scenario approach. 
Global Environmental Change, 2017. 42: p. 215-225. 

26. Christensen, P., K. Gillingham, and W. Nordhaus, Uncertainty in forecasts of long-run 
economic growth. Proceedings of the National Academy of Sciences, 2018. 115(21): p. 5409. 

27. Schewe, J., et al., Multimodel assessment of water scarcity under climate change. 
Proceedings of the National Academy of Sciences, 2014. 111(9): p. 3245. 

28. Mendelsohn, R., The Impact of Climate Change on Agriculture in Developing Countries. 
Journal of Natural Resources Policy Research, 2008. 1(1): p. 5-19. 

29. Graham, N.T., et al., Humans drive future water scarcity changes across all Shared 
Socioeconomic Pathways. Environmental Research Letters, 2020. 15(1): p. 014007. 

30. Erisman, J.W., et al., Consequences of human modification of the global nitrogen cycle. 
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2013. 
368(1621): p. 20130116-20130116. 

31. Zhou, X., et al., Combined effects of nitrogen deposition and water stress on growth and 
physiological responses of two annual desert plants in northwestern China. Environmental 
and Experimental Botany, 2011. 74: p. 1-8. 

32. Dobe, M., Viewpoint: The role of sanitation in malnutrition – A science and policy controversy 
in India. Journal of Public Health Policy, 2015. 36(1): p. 7-14. 

33. Müller, O. and M. Krawinkel, Malnutrition and health in developing countries. CMAJ : 
Canadian Medical Association journal = journal de l'Association medicale canadienne, 2005. 
173(3): p. 279-286. 

 

  



Annex A 
 

35 

2.11 Appendix 

2.11.1 Tables of results 
Table 2: Marginal damage costs (MDC) from agricultural water withdrawal in 164 countries. Measured in US$2020 
purchasing power parity (international dollars) per 1000 m3 of withdrawal (megalitre). The parameters mu and sigma refer 
to the lognormal fit to the MDC per m3 as an uncertain value: log(MDC)~N(mu,sigma). 

Country ISO3166-1 
UN 
M49 

HDI WSI 

MDC 
US$2020 
PPP per 
1000 m3 

(Megalitre) 

mu sigma 

Afghanistan AFG 4 0.511 0.966 19.5 -3.943 0.262 

Angola AGO 24 0.581 0.019 0.03 -10.512 0.564 

Albania ALB 8 0.795 0.131 5.7 -5.218 0.329 

United Arab Emirates ARE 784 0.89 0.998 241.36 -1.423 0.056 

Argentina ARG 32 0.845 0.352 13.03 -4.364 0.22 

Armenia ARM 51 0.776 0.983 170.08 -1.772 0.084 

Australia AUS 36 0.944 0.402 45.04 -3.112 0.15 

Austria AUT 40 0.922 0.096 0.83 -7.128 0.272 

Azerbaijan AZE 31 0.756 0.903 41.3 -3.185 0.125 

Burundi BDI 108 0.433 0.012 0.15 -9.309 1.063 

Belgium BEL 56 0.931 0.715 2.06 -6.191 0.104 

Benin BEN 204 0.545 0.018 0.17 -9.19 1.037 

Burkina Faso BFA 854 0.452 0.015 0.3 -8.65 1.094 

Bangladesh BGD 50 0.632 0.499 11.8 -4.429 0.244 

Bulgaria BGR 100 0.816 0.389 5.58 -5.209 0.214 

Bahrain BHR 48 0.852 1 59.43 -2.825 0.056 

Bosnia and Herzegovina BIH 70 0.78 0.077 0.5 -7.654 0.33 

Belarus BLR 112 0.823 0.076 1.33 -6.688 0.37 

Belize BLZ 84 0.716 0.01 0.14 -9.409 1.362 

Bolivia BOL 68 0.718 0.369 44.32 -3.176 0.47 

Brazil BRA 76 0.765 0.066 1.23 -6.813 0.555 

Brunei Darussalam BRN 96 0.838 0.01 0.01 -11.569 0.327 

Bhutan BTN 64 0.654 0.017 0.5 -7.675 0.419 

Botswana BWA 72 0.735 0.675 5.05 -5.442 0.745 

Central African Republic CAF 140 0.397 0.01 0 -13.858 1.049 

Canada CAN 124 0.929 0.102 0.88 -7.068 0.278 

Switzerland CHE 756 0.955 0.092 8.61 -4.787 0.26 

Chile CHL 152 0.851 0.736 56.15 -2.889 0.115 

China CHN 156 0.761 0.478 31.64 -3.466 0.189 

Cote d'Ivoire CIV 384 0.538 0.012 0.07 -9.979 0.974 

Cameroon CMR 120 0.563 0.011 0.17 -8.848 0.683 

Congo, Dem. Rep. COD 180 0.48 0.01 0.06 -10.403 1.195 

Congo, Rep. COG 178 0.574 0.01 0.01 -12.879 1.287 

Colombia COL 170 0.767 0.037 0.75 -7.279 0.449 

Cabo Verde CPV 132 0.665 0.01 0.76 -7.647 0.989 

Costa Rica CRI 188 0.81 0.016 0.49 -7.703 0.414 



Annex A 
 

36 

Cuba CUB 192 0.783 0.228 22.25 -3.836 0.256 

Cyprus CYP 196 0.887 0.875 300.31 -1.205 0.051 

Czech Republic CZE 203 0.9 0.144 3.78 -5.607 0.249 

Germany DEU 276 0.947 0.12 0.7 -7.293 0.259 

Djibouti DJI 262 0.524 0.04 0.08 -9.766 0.828 

Denmark DNK 208 0.94 0.069 11.81 -4.472 0.266 

Dominican Republic DOM 214 0.756 0.114 2.32 -6.116 0.345 

Algeria DZA 12 0.748 0.79 71.3 -2.642 0.09 

Ecuador ECU 218 0.759 0.18 5.01 -5.346 0.387 

Egypt, Arab Rep. EGY 818 0.707 0.977 40.87 -3.195 0.119 

Eritrea ERI 232 0.459 0.614 64.07 -2.83 0.483 

Spain ESP 724 0.904 0.715 123.4 -2.096 0.088 

Estonia EST 233 0.892 0.027 0.02 -10.831 0.32 

Ethiopia ETH 231 0.485 0.205 7 -5.077 0.492 

Finland FIN 246 0.938 0.416 5.86 -5.153 0.167 

France FRA 250 0.901 0.181 6.77 -5.019 0.231 

Gabon GAB 266 0.703 0.01 0.1 -9.339 0.43 

United Kingdom GBR 826 0.932 0.395 70.3 -2.667 0.156 

Georgia GEO 268 0.812 0.683 82.36 -2.508 0.159 

Ghana GHA 288 0.611 0.055 1.18 -6.859 0.596 

Guinea GIN 324 0.477 0.018 0.14 -9.279 0.957 

Gambia, The GMB 270 0.496 0.016 0.08 -9.85 0.945 

Guinea-Bissau GNB 624 0.48 0.012 0.09 -9.825 1.03 

Equatorial Guinea GNQ 226 0.592 0.01 0.02 -10.747 0.501 

Greece GRC 300 0.888 0.711 272.15 -1.305 0.067 

Guatemala GTM 320 0.663 0.012 1.48 -6.617 0.492 

Guyana GUY 328 0.682 0.011 2.81 -5.975 0.469 

Honduras HND 340 0.634 0.013 0.72 -7.962 1.482 

Croatia HRV 191 0.851 0.055 1.04 -6.91 0.287 

Haiti HTI 332 0.51 0.051 1.6 -6.749 0.816 

Hungary HUN 348 0.854 0.095 1.91 -6.297 0.281 

Indonesia IDN 360 0.718 0.18 9.03 -4.758 0.353 

India IND 356 0.645 0.967 59.19 -2.846 0.32 

Ireland IRL 372 0.955 0.022 1.84 -6.343 0.318 

Iran, Islamic Rep. IRN 364 0.783 0.912 64.27 -2.742 0.076 

Iraq IRQ 368 0.674 0.974 23.13 -3.732 0.195 

Iceland ISL 352 0.949 0.01 0 -12.41 0.321 

Israel ISR 376 0.919 0.996 198.68 -1.619 0.071 

Italy ITA 380 0.892 0.273 36.15 -3.335 0.176 

Jamaica JAM 388 0.734 0.013 0.47 -7.759 0.428 

Jordan JOR 400 0.729 0.973 39 -3.236 0.09 

Japan JPN 392 0.919 0.323 150.65 -1.909 0.182 

Kazakhstan KAZ 398 0.825 0.616 20.49 -3.899 0.163 

Kenya KEN 404 0.601 0.021 0.22 -9.003 1.195 
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Kyrgyz Republic KGZ 417 0.697 0.997 86.42 -2.449 0.116 

Cambodia KHM 116 0.594 0.089 6.49 -5.342 0.869 

Korea, Rep. KOR 410 0.916 0.597 67.62 -2.7 0.111 

Kuwait KWT 414 0.806 1 108.34 -2.216 0.054 

Lao PDR LAO 418 0.613 0.025 0.49 -7.783 0.719 

Lebanon LBN 422 0.744 0.83 61.52 -2.788 0.091 

Liberia LBR 430 0.48 0.01 0.02 -11.431 1.078 

Libya LBY 434 0.724 0.988 57.49 -2.845 0.062 

Sri Lanka LKA 144 0.782 0.611 16.19 -4.123 0.128 

Lesotho LSO 426 0.527 0.993 7.32 -4.915 0.18 

Lithuania LTU 440 0.882 0.035 1.2 -6.775 0.315 

Luxembourg LUX 442 0.916 0.1 0.12 -9.065 0.262 

Latvia LVA 428 0.866 0.019 1.36 -6.646 0.321 

Morocco MAR 504 0.686 0.844 43.07 -3.14 0.107 

Moldova MDA 498 0.75 0.143 0.7 -7.306 0.319 

Madagascar MDG 450 0.528 0.028 0.26 -8.745 1.072 

Mexico MEX 484 0.779 0.756 25.3 -3.682 0.216 

North Macedonia MKD 807 0.774 0.526 48.11 -3.048 0.179 

Mali MLI 466 0.434 0.269 4.4 -5.548 0.53 

Myanmar MMR 104 0.583 0.018 0.89 -7.105 0.418 

Montenegro MNE 499 0.829 0.098 0.2 -8.553 0.328 

Mongolia MNG 496 0.737 0.053 2.71 -5.975 0.359 

Mozambique MOZ 508 0.456 0.197 1.61 -6.547 0.536 

Mauritania MRT 478 0.546 0.085 2.79 -5.925 0.345 

Malawi MWI 454 0.483 0.012 0.04 -10.599 0.978 

Malaysia MYS 458 0.81 0.043 0.84 -7.156 0.391 

Namibia NAM 516 0.646 0.018 0.19 -8.708 0.683 

Niger NER 562 0.394 0.171 3.33 -5.808 0.48 

Nigeria NGA 566 0.539 0.298 6.26 -5.116 0.388 

Nicaragua NIC 558 0.66 0.03 0.14 -8.984 0.549 

Netherlands NLD 528 0.944 0.306 0.88 -7.048 0.192 

Norway NOR 578 0.957 0.084 36.84 -3.335 0.268 

Nepal NPL 524 0.602 1 26.47 -3.645 0.401 

New Zealand NZL 554 0.931 0.023 3.99 -5.571 0.315 

Oman OMN 512 0.813 0.982 187.45 -1.67 0.038 

Pakistan PAK 586 0.557 0.967 27.85 -3.557 0.228 

Panama PAN 591 0.815 0.012 0.07 -9.721 0.414 

Peru PER 604 0.777 0.716 64.02 -2.767 0.256 

Philippines PHL 608 0.718 0.396 14.8 -4.234 0.239 

Poland POL 616 0.88 0.07 0.88 -7.076 0.296 

Puerto Rico PRI 630 0.845 0.014 0.1 -9.225 0.329 

Korea, Dem. People's 
Rep. PRK 408 0.733 0.365 12.25 -4.779 1.288 

Portugal PRT 620 0.864 0.573 73.9 -2.611 0.087 

Paraguay PRY 600 0.728 0.013 0.18 -8.716 0.429 
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West Bank and Gaza PSE 275 0.708 0.999 102.76 -2.853 1.67 

Qatar QAT 634 0.848 1 6.76 -5.003 0.073 

Romania ROU 642 0.828 0.099 1.11 -6.865 0.359 

Russian Federation RUS 643 0.824 0.111 0.99 -6.98 0.346 

Rwanda RWA 646 0.543 0.023 0.36 -8.37 0.987 

Saudi Arabia SAU 682 0.854 0.995 21.01 -3.872 0.048 

Sudan SDN 729 0.51 0.318 3.91 -5.596 0.404 

Senegal SEN 686 0.512 0.113 1.04 -7.037 0.687 

Sierra Leone SLE 694 0.452 0.011 0.03 -10.862 1.004 

El Salvador SLV 222 0.673 0.016 0.41 -7.885 0.415 

Somalia SOM 706 0.285 0.15 2.36 -6.327 0.709 

Serbia SRB 688 0.806 0.098 1.11 -6.866 0.35 

South Sudan SSD 728 0.433 0.318 1.75 -6.412 0.428 

Suriname SUR 740 0.738 0.014 0.05 -10.436 1.056 

Slovak Republic SVK 703 0.86 0.093 1.26 -6.706 0.259 

Slovenia SVN 705 0.917 0.095 0.08 -9.431 0.274 

Sweden SWE 752 0.945 0.04 1.27 -6.709 0.307 

Eswatini SWZ 748 0.611 0.024 1.64 -7.424 1.784 

Syrian Arab Republic SYR 760 0.567 0.999 11.95 -4.658 0.775 

Chad TCD 148 0.398 0.027 0.26 -8.649 0.901 

Togo TGO 768 0.515 0.015 0.03 -10.999 0.992 

Thailand THA 764 0.777 0.534 14.98 -4.199 0.166 

Tajikistan TJK 762 0.668 0.999 96.21 -2.361 0.283 

Turkmenistan TKM 795 0.715 0.995 37.28 -3.273 0.118 

Timor-Leste TLS 626 0.606 0.01 0.23 -8.564 0.733 

Trinidad and Tobago TTO 780 0.796 0.506 0.23 -8.275 0.22 

Tunisia TUN 788 0.74 0.907 37.81 -3.274 0.12 

Turkey TUR 792 0.82 0.779 162.23 -1.828 0.148 

Tanzania TZA 834 0.529 0.013 0.15 -9.218 0.978 

Uganda UGA 800 0.544 0.023 0.18 -9.026 0.934 

Ukraine UKR 804 0.779 0.3 4.88 -5.35 0.249 

Uruguay URY 858 0.817 0.012 0.46 -7.719 0.333 

United States USA 840 0.926 0.499 36.46 -3.32 0.135 

Uzbekistan UZB 860 0.72 0.985 65.81 -2.767 0.42 

Venezuela, RB VEN 862 0.711 0.295 20.24 -5.674 2.374 

Vietnam VNM 704 0.704 0.35 14.47 -4.257 0.238 

Yemen, Rep. YEM 887 0.47 0.942 55.74 -2.911 0.29 

South Africa ZAF 710 0.709 0.687 9.03 -5.223 1.196 

Zambia ZMB 894 0.584 0.012 0.07 -9.725 0.635 

Zimbabwe ZWE 716 0.571 0.192 2.06 -6.344 0.675 
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Table 3: Comparisons in marginal damage costs from water use in agriculture. Malnutrition (equation 1) and income 
components (equation 2) in columns 4 and 5, a total damage costs by multiplying against all agricultural water withdrawals 
in 2019 (AQUASTAT) in column 6, and the percentage of damage cost against agricultural GVA (missing values implies GVA 
was not available). 

Country 
ISO 

3166-
1 

MDC 
US$2020 
PPP per 
1000 m3 

(Megalitre) 

MDC Maln 
US$2020 
PPP per 
1000 m3 

(Megalitre) 

MDC Inc 
US$2020 
PPP per 
1000 m3 

(Megalitre) 

Damage cost 
using total ag 

water 
withdrawals 

US$2020 
1000s 

Percent 
of 

damage 
costs 

against 
GVA ag 

Afghanistan AFG 19.5 11.48 26.85 388308 8% 

Angola AGO 0.03 0.08 0.09 4 0% 

Albania ALB 5.7 0.19 17.53 4319 0% 

United Arab 
Emirates ARE 241.36 0 276.09 512258 17% 

Argentina ARG 13.03 0.28 27.23 362992 1% 

Armenia ARM 170.08 1.94 253.61 361654 22% 

Australia AUS 45.04 0 63.5 455546 2% 

Austria AUT 0.83 0 1.52 64 0% 

Azerbaijan AZE 41.3 2.15 63.42 382857 14% 

Burundi BDI 0.15 0.24 1.15 34 0% 

Belgium BEL 2.06 0 2.61 93 0% 

Benin BEN 0.17 0.1 1.22 5 0% 

Burkina Faso BFA 0.3 0.17 2.29 126 0% 

Bangladesh BGD 11.8 4.17 17.02 371759 1% 

Bulgaria BGR 5.58 0.09 11.85 4658 0% 

Bahrain BHR 59.43 0.95 67 3042 3% 

Bosnia and 
Herzegovina BIH 0.5 0.01 1.52 10 0% 

Belarus BLR 1.33 0.03 4.14 573 0% 

Belize BLZ 0.14 0.02 0.98 10 0% 

Bolivia BOL 44.32 0.9 105.18 85101 2% 

Brazil BRA 1.23 0.12 4.85 48454 0% 

Brunei 
Darussalam BRN 0.01 0 0.02 0 0% 

Bhutan BTN 0.5 0.11 1.77 160 0% 

Botswana BWA 5.05 0.99 12.02 349 0% 

Central African 
Republic CAF 0 0 0.01 0 0% 

Canada CAN 0.88 0 1.64 2339 0% 

Switzerland CHE 8.61 0 15.63 1378 0% 

Chile CHL 56.15 1.78 70.49 1649133 16% 

China CHN 31.64 0.96 59.56 12060545 1% 

Cote d'Ivoire CIV 0.07 0.14 0.32 43 0% 

Cameroon CMR 0.17 0.17 0.78 125 0% 

Congo, Dem. 
Rep. COD 0.06 0.02 0.5 4 0% 

Congo, Rep. COG 0.01 0.01 0.07 0 0% 
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Colombia COL 0.75 0.05 2.96 4816 0% 

Cabo Verde CPV 0.76 0.05 4.55 18 0% 

Costa Rica CRI 0.49 0.02 1.84 1133 0% 

Cuba CUB 22.25 0.37 54.44 100525 3% 

Cyprus CYP 300.31 1.09 350.22 38377 9% 

Czech Republic CZE 3.78 0 6.68 176 0% 

Germany DEU 0.7 0 1.26 210 0% 

Djibouti DJI 0.08 0.18 0.31 0 0% 

Denmark DNK 11.81 0 21.56 3859 0% 

Dominican 
Republic DOM 2.32 0.31 7.15 17527 0% 

Algeria DZA 71.3 0.97 105.12 445657 2% 

Ecuador ECU 5.01 0.47 14.81 40446 0% 

Egypt, Arab 
Rep. EGY 40.87 2.32 64.88 2077132 6% 

Eritrea ERI 64.07 11.85 155.52 35240  

Spain ESP 123.4 0 155.51 2513126 7% 

Estonia EST 0.02 0 0.04 0 0% 

Ethiopia ETH 7 3.06 21.97 67766 0% 

Finland FIN 5.86 0 8.72 1029 0% 

France FRA 6.77 0 11.6 21087 0% 

Gabon GAB 0.1 0.02 0.36 4 0% 

United Kingdom GBR 70.3 0 101.16 83154 0% 

Georgia GEO 82.36 0.69 151.16 87374 8% 

Ghana GHA 1.18 0.53 4.5 1251 0% 

Guinea GIN 0.14 0.16 0.77 42 0% 

Gambia, The GMB 0.08 0.09 0.39 3 0% 

Guinea-Bissau GNB 0.09 0.15 0.56 12 0% 

Equatorial 
Guinea GNQ 0.02 0.02 0.09 0 0% 

Greece GRC 272.15 1.19 327.04 2460487 32% 

Guatemala GTM 1.48 0.08 6.03 2799 0% 

Guyana GUY 2.81 0.09 11.23 3829 0% 

Honduras HND 0.72 0.09 6.07 851 0% 

Croatia HRV 1.04 0.02 1.94 74 0% 

Haiti HTI 1.6 1.59 7.98 1939 0% 

Hungary HUN 1.91 0.03 3.52 991 0% 

Indonesia IDN 9.03 0.41 27.79 1713372 1% 

India IND 59.19 6.94 97.11 34648087 7% 

Ireland IRL 1.84 0 3.65 290 0% 

Iran, Islamic 
Rep. IRN 64.27 1.12 74.99 5506689 18% 

Iraq IRQ 23.13 8.46 26.25 815552 11% 

Iceland ISL 0 0 0.01 0 0% 

Israel ISR 198.68 0 230.05 129028 3% 
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Italy ITA 36.15 0 55.28 611928 2% 

Jamaica JAM 0.47 0 1.83 53 0% 

Jordan JOR 39 2.27 57.42 18725 1% 

Japan JPN 150.65 0 234.64 8176802 13% 

Kazakhstan KAZ 20.49 0.54 36.25 284486 4% 

Kenya KEN 0.22 0.27 1.81 715 0% 

Kyrgyz Republic KGZ 86.42 3.16 132.06 617366 60% 

Cambodia KHM 6.49 1.44 34.39 13333 0% 

Korea, Rep. KOR 67.62 0 89.63 1163557 4% 

Kuwait KWT 108.34 3.47 124.86 51958 10% 

Lao PDR LAO 0.49 0.3 2.16 3473 0% 

Lebanon LBN 61.52 1.18 91.03 42406 3% 

Liberia LBR 0.02 0.01 0.14 0 0% 

Libya LBY 57.49 3.81 80.3 273589  

Sri Lanka LKA 16.19 0.72 26.08 183098 3% 

Lesotho LSO 7.32 2.32 10.26 28 0% 

Lithuania LTU 1.2 0.02 2.3 71 0% 

Luxembourg LUX 0.12 0 0.21 0 0% 

Latvia LVA 1.36 0.02 2.69 84 0% 

Morocco MAR 43.07 3.09 64.61 399716 3% 

Moldova MDA 0.7 0.03 2.04 30 0% 

Madagascar MDG 0.26 0.23 2.15 3445 0% 

Mexico MEX 25.3 1.48 42.35 1690130 4% 

North 
Macedonia MKD 48.11 0.57 93.59 20090 2% 

Mali MLI 4.4 6.56 10.76 22324 0% 

Myanmar MMR 0.89 0.31 3.01 26137 0% 

Montenegro MNE 0.2 0 0.62 0 0% 

Mongolia MNG 2.71 0.06 8.76 681 0% 

Mozambique MOZ 1.61 3 3.4 1731 0% 

Mauritania MRT 2.79 1.71 7.26 3407 0% 

Malawi MWI 0.04 0.17 0.07 44 0% 

Malaysia MYS 0.84 0.04 2.93 2578 0% 

Namibia NAM 0.19 0.18 0.78 37 0% 

Niger NER 3.33 5.02 6.5 5104 0% 

Nigeria NGA 6.26 2.93 15.17 34494 0% 

Nicaragua NIC 0.14 0.14 0.45 160 0% 

Netherlands NLD 0.88 0 1.39 34 0% 

Norway NOR 36.84 0 67.92 31129 0% 

Nepal NPL 26.47 15.52 34.38 246680 3% 

New Zealand NZL 3.99 0 7.89 24286 0% 

Oman OMN 187.45 4.18 213.03 262934 15% 

Pakistan PAK 27.85 21.16 23.6 5234433 9% 

Panama PAN 0.07 0.01 0.24 29 0% 

Peru PER 64.02 1.53 119.06 838953 5% 
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Philippines PHL 14.8 0.77 34.17 1005713 3% 

Poland POL 0.88 0.02 1.66 898 0% 

Puerto Rico PRI 0.1 0 0.21 3 0% 

Korea, Dem. 
People's Rep. PRK 12.25 0.21 45.79 80948  

Portugal PRT 73.9 1.15 91.79 530066 11% 

Paraguay PRY 0.18 0.05 0.62 335 0% 

West Bank and 
Gaza PSE 102.76 1.28 263.72 8538 1% 

Qatar QAT 6.76 0.96 6.76 542 0% 

Romania ROU 1.11 0.03 3.51 1660 0% 

Russian 
Federation RUS 0.99 0.05 2.99 18386 0% 

Rwanda RWA 0.36 0.09 2.58 37 0% 

Saudi Arabia SAU 21.01 2.31 21.74 366282 2% 

Sudan SDN 3.91 3.79 7.1 101409 1% 

Senegal SEN 1.04 3.8 0.54 2157 0% 

Sierra Leone SLE 0.03 0.05 0.18 1 0% 

El Salvador SLV 0.41 0.05 1.47 584 0% 

Somalia SOM 2.36 5.86 7.63 4581  

Serbia SRB 1.11 0.02 3.51 732 0% 

South Sudan SSD 1.75 2.91 2.25 420 0% 

Suriname SUR 0.05 0.04 0.48 20 0% 

Slovak Republic SVK 1.26 0.01 2.27 40 0% 

Slovenia SVN 0.08 0 0.15 0 0% 

Sweden SWE 1.27 0 2.49 96 0% 

Eswatini SWZ 1.64 0.29 16.49 1644 0% 

Syrian Arab 
Republic SYR 11.95 6.48 40.9 146025  

Chad TCD 0.26 0.68 0.89 173 0% 

Togo TGO 0.03 0.06 0.14 2 0% 

Thailand THA 14.98 1.27 25.98 776030 2% 

Tajikistan TJK 96.21 5.1 161.16 910481 53% 

Turkmenistan TKM 37.28 4.8 54.07 979643 20% 

Timor-Leste TLS 0.23 0.14 1.08 246 0% 

Trinidad and 
Tobago TTO 0.23 0.14 0.17 3 0% 

Tunisia TUN 37.81 1.47 55.67 139544 3% 

Turkey TUR 162.23 1.01 255.45 8263471 17% 

Tanzania TZA 0.15 0.3 0.76 712 0% 

Uganda UGA 0.18 0.07 1.15 47 0% 

Ukraine UKR 4.88 0.15 11.31 14712 0% 

Uruguay URY 0.46 0.05 0.88 1466 0% 

United States USA 36.46 0 49.22 6425522 3% 

Uzbekistan UZB 65.81 2.37 125.33 3577273 24% 

Venezuela, RB VEN 20.24 0.63 179.69 338175 1% 
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Vietnam VNM 14.47 1.03 34.25 1122380 3% 

Yemen, Rep. YEM 55.74 15.86 92.53 180323 15% 

South Africa ZAF 9.03 2.2 39.34 102826 2% 

Zambia ZMB 0.07 0.16 0.32 77 0% 

Zimbabwe ZWE 2.06 3.43 6.95 5702 1% 

 

Table 4: water damages sorted by malnutrition component larger than income component, total damage costs yr-1 in 

millions US$2020 PPP using annual (2019) withdrawals for agriculture, and the size of total damage costs yr-1 compared to 
annual (2019) GVA of agriculture 

Country 

Malnutrition 
costs as 

percentage 
of income 

loss 

 Country 

Damage 
costs 

(millions 
US$2020 

PPP) 

 Country 

Percent 
Damage 

costs 
against 

GVA 

Senegal 700%   India 34648   Kyrgyz Republic 60% 

Malawi 245%   China 12061   Tajikistan 53% 

South Sudan 130%   Turkey 8263   Greece 32% 

Pakistan 90%   Japan 8177   Uzbekistan 24% 

Mozambique 88%   United States 6426   Armenia 22% 

Angola 85% 

  Iran, Islamic 
Rep. 5507 

  

Turkmenistan 20% 

Trinidad and 
Tobago 85% 

  

Pakistan 5234 

  

Iran, Islamic Rep. 18% 

Niger 77%   Uzbekistan 3577   Turkey 17% 

Somalia 77% 

  

Spain 2513 

  United Arab 
Emirates 17% 

Chad 76%   Greece 2460   Chile 16% 

Mali 61% 

  Egypt, Arab 
Rep. 2077 

  

Yemen, Rep. 15% 

Djibouti 59%   Indonesia 1713   Oman 15% 

Sudan 53%   Mexico 1690   Azerbaijan 14% 

Zambia 50%   Chile 1649   Japan 13% 

Zimbabwe 49%   Korea, Rep. 1164   Iraq 11% 

Nepal 45%   Vietnam 1122   Portugal 11% 

Cote d'Ivoire 44%   Philippines 1006   Kuwait 10% 

Afghanistan 43%  Turkmenistan 980  Cyprus 9% 

Togo 41%  Tajikistan 910  Pakistan 9% 

Tanzania 39%  Peru 839  Afghanistan 8% 
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2.11.2 Distributions of marginal and total damage costs 

 

Figure 6: “Hidden” cost of water withdrawal in agriculture, obtained by summing marginal costs and total withdrawals 
across the 164 countries in Table 2. Derived samples and not parametric estimates used. The joint distribution of marginal 
damage water costs for individual countries are moderately to weakly positively correlated, resulting in a slightly skew 
distribution shape for the addition of many weakly correlated random variables. Expected costs of ~115 billion US$2020 
PPP. 
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Figure 7: Highest damage costs using the quantity of agricultural water withdrawals for 2019, and a comparison of damage 
cost against agricultural GVA for 2019. Long cross lines in the box plot represent median values, and the thick line 
represents the interquartile range. Derived samples and not parametric estimates used. 
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Figure 8: example distributions of samples of MDC (blue) for HDI <0.625. Malnutrition MDC_water (grey) and income 
damages (red) are shown separated in the bottom panel uncorrected and undiscounted. 
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Figure 9 example distributions of samples of MDC (blue) for 0.625 < HDI <0.75. Malnutrition (grey) and income damages 
(red) are shown separated in the bottom panel uncorrected and undiscounted. 
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Figure 10: example distributions of samples of MDC (blue) for 0. HDI > 0.75. Malnutrition (grey) and income damages (red) 
are shown separated in the bottom panel uncorrected and undiscounted. Malnutrition losses are zero for HDI > 0.89. 
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2.11.3 Additional figures on Bayesian regression and example distributions of components 

Fit of the residuals in the OLS MLE estimate of the quadratic surface in Figure 2. A Bayesian 

regression was used to estimate uncertainty in the factor 𝐷𝐹𝑖: 

 

Figure 11: left panel shows heteroscedasticity in residuals for the OLS MLE quadratic surface fit. Three intervals of HDI (HDI 
< 0.625, 0.625<= HDI < 0.75, HDI >=0.75) were chosen for models of the residuals for a Bayesian regression on the 
parameter space of the quadratic fit. Right panel shows MLE fits of the residuals (Weibull distributions) in the three 
different intervals. HDI < 0.625 as blue, 0.625<= HDI < 0.75 is orange and HDI >= 0.75 in green. Ignoring heteroscedasticity 
would result in a poor MLE fit of a normal distribution to all residuals (black dashed curve). 

Marginals on the joint parameter space (𝛾1, 𝛾2, 𝛾3) for the Bayesian quadratic fit of 𝐻𝐷𝐹𝑖 , 0.3 ≤

𝐻𝐷𝐼 < 0.89 within the factor 𝐸𝐹𝑖: 

𝐻𝐷𝐹(𝐻𝐷𝐼, (𝛾1, 𝛾2, 𝛾3)) =
𝛾3 + 𝐻𝐷𝐼 ⋅ 𝛾2 + 𝐻𝐷𝐼2 ⋅  𝛾1

𝛾3 + 0.3 ⋅ 𝛾2 + 0.32 ⋅  𝛾1
. 

 

Figure 12: marginals on the joint parameter space (𝛾1, 𝛾2, 𝛾3). 

Example results for the factor EF for HDI < 0.625: 
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Figure 13: examples of distributions for the factor EF from equation (1). For example, in Ghana the factor derived from the 
method of [9] indicates 0.2 people undernourished from damage to water resources present or future per 1000 m3 
(megalitre) withdrawn for agriculture. 

 

Figure 14 examples of distributions of the discount factor 𝜌, which depends on the water stress index. The main discrete 
variation is due to uncertainty in the discount rate (GDP growth) across SSPs. 


