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Summary 

Marginal damage costs in international dollars (US$2020 Purchasing Power Parity) per kg in N-

weight of NH3 (ammonia) emissions to atmosphere, per kg in N-weight of NOx (nitrogen oxide & 

dioxide) emissions to atmosphere, per kg in N-weight of Nr (reactive nitrogen) run-off to surface 

waters, and per kg in N-weight of Nr (reactive nitrogen) leached to groundwater are estimated for 

171 countries. The damage costs estimate 2020 present value of present and future economic losses 

from 1 kg of the respective atmospheric or aquatic reactive nitrogen emission in 2020. 

The marginal damage costs for each country and each form of reactive nitrogen emission are 

provided as random variables of loss in parametric form in Table 7 on page 64. Two parameters, mu 

and sigma, are estimated for a lognormal distribution of probable US$2020 PPP present values given 

1 kg of atmospheric or aquatic reactive nitrogen emission. The samples from which the parametric 

forms are derived and the correlation matrix for covariance of loss across countries are available in 

the SPIQ-FS dataset. 

Use for economic loss 

The objective of the SPIQ-FS dataset is to enable estimates of economic risk due to food system 

activities and the economic potential of food system transformation. The intended use involves 

aggregation across countries and quantities, for example, in global studies of dietary change or for 

multinational company or value chain estimates of impact. 

The marginal cost estimates should not be used for local or site-specific studies. 

The estimate represents aggregated economic loss to a present or future economy (e.g. reduction in 

Gross Domestic Product (GDP) or consumption as an income-equivalent welfare loss) but no 

transfers between individual economic actors or sectors (e.g. payments from households to the 

health sector for health costs). 

The average present value of probable US$2020 PPP marginal economic loss given 1 kg of 

atmospheric or aquatic reactive nitrogen emission for each country and each form of reactive 

nitrogen emission is reported in Table 6 on page 60. The average value should be used to calculate 

the average value of total economic losses across multiple countries and quantities since it is 

additive. 

To calculate risk in total economic losses within a country from one form of nitrogen pollution, the 

distribution of probable US$2020 PPP marginal economic loss given 1 kg of atmospheric or aquatic 

reactive nitrogen emission in Table 7 should be multiplied by the quantity of emissions. This may 

overestimate the uncertainty in total economic losses for a large quantity of emissions and may 

underestimate the uncertainty for a small quantity of emissions given only the knowledge that the 

emission occurs within the country1. 

 
1 Over- or under-estimation may result since it is unclear whether 1 kg of emission of NH3, say, by food system 
activities represent independent lotteries of economic loss. When aggregating to a total economic loss for n kg 
emitted, the sum of n random variables each with lognormal distribution given by Table 7 as a representation 
of the uncertainty in total economic loss should not be used without a sufficient argument for independence 
within the impact pathways of each unit of emission. For example, the total economic impact of CO2 (carbon 
dioxide) emissions in 2050, treating each emission as a random draw from the distribution of economic loss for 
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To calculate risk in total economic losses across multiple forms of nitrogen pollution, other impact 

quantities such as Greenhouse Gas (GHG) emissions, and multiple countries, the correlation matrices 

in the SPIQ dataset should be used to reconstruct a joint distribution of probable US$2020 PPP 

present values for the impact quantities2. Samples from the joint distribution of marginal damages 

should be multiplied by their respective quantities for each country and then added. The resulting 

set is a sample of total economic losses. Economic risk or economic potential is generally 

underestimated without using joint sampling. 

It is not recommended to use the average values in Table 6 separate from the uncertainty estimate 

in Table 7. 

Use for economic potential 

The marginal damage costs in Table 7 and any totals for economic losses calculated using them do 

not include the value (benefits) provided to society from 1 kg of atmospheric or aquatic reactive 

nitrogen emission. There is no comparison with a counterfactual to estimate the balance of value 

between avoided damages from nitrogen emissions and the costs to abate nitrogen emissions. 

Abatement costs include the option of ‘paying the cost’ of losing the production value from nitrogen 

use. 

Reducing nitrogen emissions will not ‘save the costs’ to the global economy of amounts calculated 

using the values in Table 6 on page 60 and Table 8 on page 68. Damage costs should be paired with 

abatement costs and counterfactuals to determine the economic risk from food system activities 

and the economic potential in food system transformation. 

The simplest use with a counterfactual is two or more scenarios which, all else being equal, have the 

same value from production with different quantities of nitrogen emissions. In this case, a change in 

overall economic value is estimated by the marginal damage costs multiplied by the change in the 

respective atmospheric or aquatic reactive nitrogen emission. 

Methodology and caveats 

Impact pathway 

 
1 metric ton of CO2 emitted and summing the random variables, will result in a gross error if economic loss is 
not independent between each emission due to a common component in the impact pathway (e.g. a 
systematic underestimate in the chemistry of radiative forcing). For nitrogen pollutions, emissions share 
common biological responses in exposed ecosystems and human populations and can share similar factors 
related to impact such as temperature, humidity, and precursors to particulate production. Large quantities of 
emissions from spatially separated sources across countries with heterogeneity in factors related to impact is 
discussed in the text. Uncertainty for marginal damage costs when quantities are unspecified is not fully 
resolved in SPIQ Version 0. 
2 Covariance in economic losses due to joint emission or production of impact quantities from food system 
activities, for example 1 kg of NH3 emission in country 𝑖 and 1 metric ton of CO2 emitted in country 𝑗, is 
estimated in the document “SPIQ-FS Version 0: double counting and estimation of correlations between 
impact quantities”. The parametric form given in Table 7 represents what is called the marginal distribution of 
a joint distribution across countries and quantities of marginal damages for the impact quantities associated to 
food system activities. Determination of the correlations considers spatial and temporal coincidence of impact. 
All SPIQ-FS Version 0 damages are for impact quantities produced in 2020. A later version may consider joint 
distribution across countries and quantities and years of emission/production. 
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Ammonia (NH3) emissions to atmosphere create ammonium compound particulate matter. 

Exposure of human populations occurs through wide dispersal with subsequent health effects and 

gross productivity losses. Wet and dry deposition of ammonium compounds and ammonia on 

terrestrial and aquatic systems can cause acidification and biodiversity loss. Deposition is a 

secondary source of atmospheric emissions or run-off causing acidification and eutrophication. 

Acidification can cause crop losses and damage to ecosystem services produce economic loss. 

Nitrogen oxide & dioxide (NOx) emissions to atmosphere interact producing particulate matter and 

tropospheric ozone. Exposure of human populations occurs through wide dispersal with subsequent 

health effects and gross productivity losses. Dispersed ozone damages plant tissue directly. Wet and 

dry deposition of particulate matter and reactive nitrogen compounds such as nitric acid on 

terrestrial and aquatic systems can cause acidification and biodiversity loss. As for ammonia, 

deposition is a secondary source of atmospheric emissions or run-off causing acidification and 

eutrophication. Acidification and ozone exposure can cause crop losses and damage to ecosystem 

services produce economic loss. 

From direct application on cropland and grassland, or from atmospheric deposition on cropland, 

grassland, forests, other terrestrial biomes, surplus Nr leaches from soil into groundwater or is 

transported in surface run-off into riverine systems. Soluble nitrate (NO3-) is the main species. 

Nitrate consumed in drinking water produces subsequent health effects and gross productivity 

losses. Nitrogen in surface freshwater can be retained in inland waterways and connected 

ecosystems, causing acidification, biodiversity loss and eutrophication. Nitrogen not retained and 

exported to coastal environment causes acidification, biodiversity loss and eutrophication and can 

be a source of secondary atmospheric emissions. 

Secondary emission of N2O from nitrification and denitrification processes associated the 

atmospheric NH3 or NOx emissions, or reactive nitrogen emissions to surface water and 

groundwater, are assumed to be quantified within GHG emissions. 

Calculation and uncertainty 

Attribution of human and ecosystem damage from the nitrogen cascade of NH3 or NOx emitted to 

air from agricultural activities, or reactive nitrogen leached to groundwater or entering surface 

waters as run-off, come from a limited set of studies. Most marginal estimates are based on 

calculations for the European Union (EU) nitrogen assessment. Transfer to other countries involves 

modification of exposure and ecosystem damage factors, with a large amount of uncertainty. 

Marginal damages from NH3 and NOx air pollution are adjusted by scaling a low-resolution 

regression model of exposure and vulnerability. Spatial datasets on global deposition are used to 

estimate differences between countries in the face of atmospheric emissions and secondary impacts 

from deposition and run-off. 

Marginal damages from run-off to surface water are adjusted using proportional average costs of 

lost ecosystem services. Spatial datasets on inland retention and export to coastal systems of 

nitrogen are used to determine differences in loads to ecosystems between countries, and spatial 

dataset are used to estimate the differences in habitats and value of their ecosystem services. 

Marginal damages from concentration of nitrate in groundwater are adjusted using proportional 

costs of lost life years. 
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The variation between countries is large, from US$2020 PPP >100 per kg of Nr run-off in countries 

with high proportion of reactive nitrogen export to high value coastal systems to US$2020 PPP < 10 

per kg with high retention of nitrogen in lower value inland aquatic. US$2020 PPP >30 per kg of NH3-

N is expected in countries with high population density and presence of acidic precursors for 

ammonium particle formation to US$2020 PPP < 10 in countries with low population density and 

inhibitors of particle formation. Large variation is due to primary factors such as population density 

and the nitrogen cascade, where the “fate” of emitted nitrogen varies greatly between countries. 

The greatest variance between countries is in the estimate of the marginal damage cost of Nr 

surface run-off. Spatial datasets based on modelling show huge variation between nitrogen retained 

in inland water systems and export to coastal systems. Where a country has a high proportion of 

riverine export of Nr to coastal systems, the valuations in the Ecosystems Service Valuation Dataset 

(ESVD) for many countries has much higher values for coral reefs and coastal systems than retention 

in inland wetlands. Damage costs for run-off to surface waters are also the most uncertain, due to 

high uncertainty for the economic value of losses of inland water and coastal ecosystem services.  

Our mean values for health damages from NH3 and NOx are lower than other studies, which (a) are 

from EU countries with a higher population density compared to most countries in the rest of the 

world, (b) use value of a statistical life, and (c) are not average marginal damage cost to be used at a 

country level but estimated at a higher resolution. Despite having lower mean values, the 

uncertainty represented in Table 7 spans an order of magnitude and includes the estimates based on 

value of a statistical life. 

Caveats include using broad assumptions for transport from the EU nitrogen assessment to other 

countries. Transboundary effects of run-off and deposition for smaller countries within proximity to 

large nitrogen emitters may be large. Detailed spatial modelling of the fate of nitrogen, and the 

connection to surrounding socio-economic systems is recommended to improve the estimates and 

reduce uncertainty, though, even with this modelling, attribution between services lost and the load 

of nitrogen to human and natural systems is still a challenge. Potential improvements will be 

afforded by a greater emphasis on spatially explicit modelling in SPIQ-FS Version 1. 

Damage costs in the SPIQ-FS dataset are not valuable for direct comparison of countries. The costs 

represent primarily the externalised costs of nitrogen use for market corrections in the economies 

where the costs are borne. 

Global perspective 

For perspective, national estimates of NH3 and NOx atmospheric emissions from the agricultural 

sector from EDGAR5.0 and agricultural contribution to total run-off and groundwater leaching from 

IMAGE-GNM across 171 countries are paired with the marginal damage costs (Section 4.4.3 from 

page 37 and Section 4.10.2 from page 75). 

Estimated global costs of nitrogen use for agriculture are over US$2020 PPP 1 trillion, with a greater 

than 5% chance that costs are over US$2020 PPP 3 trillion. China represents over 30% of the total 

damage costs with an expected loss of US$2020 PPP 390 billion. How much of this estimated 

economic loss can be recovered from transforming agricultural production and food systems is 

unclear without global modelling studies of abatement and the respective costs of nitrogen 

emissions. 
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The large uncertainty in ecosystem service losses from surface run-off, and the dominance of several 

countries in terms of quantity of run-off (China, Brazil, India, Russia, United States) give the global 

distribution of losses a long tail (Figure 11 on page 79).  
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4 Nitrogen 

4.1 Quantities associated to impact 
The food system is associated to ~80% of anthropogenic ammonia (NH3) emissions and ~20% of 

anthropogenic NOx emissions into the atmosphere [1-6] (Figure 1). Both forms of reactive nitrogen 

(Nr) emissions to the atmosphere are associated to human health damage from inhalation of 

particulate matter [7] and ecosystem damage from subsequent atmospheric deposition on 

terrestrial, riverine, and marine environments [8]. 

The food system is associated to ~80% of anthropogenic Nr emissions into inland waterways [2, 9] 

(Figure 1). Some of the emission to inland waterways transport through riverine systems to coastal 

and marine environments. Most of the direct Nr emissions to waterways are soluble nitrate NO3- 

direct from fertiliser and manure run-off and leaching, as well as human waste from consumed food. 

The smaller components are run-off from land deposition, or direct deposition on riverine, coastal, 

or marine systems of agricultural atmospheric Nr emissions as well as atmospheric NOx from 

burning fossil fuels for energy and transport (some of which is attributable to energy use in the food 

system [10]). Excess soluble Nr impacts ecosystems through eutrophication and acidification, and 

impacts humans and animals through nitrate pollution of drinking water [8]. 

Release into the atmosphere of N2O (nitrous oxide) from soils, fertilizer application, and manure, 

and the costing of N2O emissions, is considered in Annex A – GHG. Atmospheric and aquatic 

transmission of ammonia, nitrates and nitrogen oxides can result in terrestrial and marine 

deposition of Nr and secondary N2O emissions before and during denitrification [11]. In 2016, 1.3 Tg 

N yr-1 of N2O emissions were from secondary anthropogenic N deposition compared to ~5.5 Tg N yr-1 

of net primary anthropogenic N2O emissions [12]. ~70% of anthropogenic N2O emission is 

attributable to the food system through primary emissions (Figure 1) and secondary emissions from 

deposition (not shown). 

4.1.1 Food system sources of N emissions 
Nitrogen is embedded in crops from natural atmospheric deposition, biological N fixation, crop 

residues and recycling manure, and synthetic fertilizer application. It is embedded in livestock 

products through consumption of grass and feed. Human N intake of embedded N in crop and 

livestock products is excreted in faeces or urine. The transport of embedded N through crop and 

livestock products has been called virtual N. 

Subtracting manure losses from vegetal food production, livestock is responsible for 63% (67 Tg N yr-

1) of estimated food system 2010 N emissions [13] (Figure 1) while providing 17% of global calories 

and 33% of global protein (FAOSTAT, 2014) [14]. 61% (41 Tg N yr-1) of livestock N emissions are 

attributed to crop-based feed. 31% (21 Tg N yr-1) of livestock N emissions are attributed to manure. 

Livestock production dominates the flux of N in the food system (Figure 1). Emissions from 

processing livestock (1 Tg N yr-1), and the fate of virtual nitrogen embedded in meat and dairy 

products (4 Tg N yr-1), are minor and make up most of the remaining 8%. 

Vegetal-based food is responsible for 35% (33 Tg N yr-1) of estimated food system 2010 N emissions 

(Figure 1). 26 Tg N yr-1 is emitted from production of vegetal foods and 7 Tg N yr-1 is emitted from 

human waste. Vegetal sources provide 82% of global calories and 60% of global protein (FAOSTAT, 

2014). 
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Aquaculture’s contribution to food system N emission is presently small. China is responsible for 

>66% of global aquacultural production. Estimates of Chinese aquaculture NH3 air emissions are 

0.54 Tg N yr-1, and Noy deposition to coastal sediment 2.1 Tg N yr-1 [15] – making terrestrial sources 

of food production and human waste greater emitters than aquaculture. Aquaculture is responsible 

for <2% of food production N2O emissions [12]. Global seafood consumption provides 1% of global 

calories and 7% of global protein (FAOSTAT, 2014). 

 

Figure 1: Source: Author. Units Tg N yr-1. NH3, NOx and NO3- emissions of the global food system 2010, with division of fluxes 
between grassland, cropland, livestock and non-livestock feed and foods, and aquaculture. Derived from 2010 livestock 
accounting from [13], extrapolated with 2010 total flux accounting from [2, 9], and consistent with crop factors from [16]. 
Aquaculture extrapolated from [15]. Consistency with other studies examined in [4, 5, 16, 17]. N2O emissions primary and 
secondary from [12].  Waste water treatment N2O from [18]. Excludes Nr emissions from food system energy use and 
transport. Waste emissions are from untreated waste of consumed food, with treatment factors from [19]. Fertiliser rates for 
grassland are scaled from [20] and with grassland surplus excluding manure. Grassland surplus high uncertainty. Other crop 
surplus losses include non-food crop uses. Uncertainties on fates of other losses from cropland surplus exist within 
anthropogenic input Nr run-off and leaching into water ways (estimated 75 Tg N yr-1 in [21] and 110 in Tg N yr-1 in [9], though 
it is unclear whether the total in [21] is before or after water treatment). NO3- in waterways and groundwater is most of 
input Nr from run-off and leaching. Around 40% of Nr input to waterways is transported to coastal and marine environments, 
though there is large uncertainty in denitrification sinks during transport from soils, water bodies, vegetation and 
groundwater [22]. An estimated 12 Tg N yr-1 of N run-off from fertiliser, manure and secondary deposition acts as additional 
N input to aquaculture, whose surplus is not shown (believed to be stored in excess N held in coastal waters and N transport 
to ocean [15]). 4.2 Tg N yr-1 in N-weight of N2O emissions matches the ~6.8 Mt N2O emissions attributed to the food system 
[23], see Annex A – GHG Figure 1. NOx emissions from energy use in the food system indicated in compound column. 
Secondary emissions from nitrogen cascades not shown (see Damage costs below). From atmospheric deposition of food 
system NH3 and NOx emissions from manure, fields, waste, and aquaculture, an estimated 0.65 Tg N yr-1 (1 Mt) of secondary 
N2O emissions would be attributed to the food system [1-3, 12]. In 2010 livestock dominated the flux of Nr through: 
absorption of N in crop-based feed, emissions from production of the crop-based feed, and manure. Without attributing 
manure losses from vegetal food production, livestock is responsible for 63% (67 Tg N yr-1) of estimated food system 2010 N 
emissions [13]. Livestock production has accelerated in the decade 2010-2020. After livestock, fertiliser emissions for vegetal-
based human food and human waste are the largest emission sources. Total 2010 anthropogenic atmospheric emissions of 
NH3, N2O and NOx added for reference to food system emissions (NH3 total 48 Tg N yr-1  and NOx total 45 Tg N yr-1 from 
EDGAR 4.3.2 [6], N2O total 5.4 Tg N yr-1 from [12]). 

Processing and manufacturing of food products result in <2% of food system direct N emissions from 

release of embedded N, mostly to waterways. Attribution of N impacts for processors, 

manufacturers, and retailers, is through “Scope 2” emissions of NOx from energy and transport, 
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upstream “Scope 3” Nr emissions from agriculture, and downstream “Scope 3” Nr waste emissions 

post-consumption. 

High resolution satellite data of atmospheric NH3 emissions can pinpoint concentrated emissions in 

proximity to human concentrations and ecosystems. Satellite data suggests that NH3 emissions 

databases may underestimate livestock and fertiliser manufacturing emissions [24]. 

Fossil fuel production and use emits NOx and NH3 to the atmosphere. Therefore, energy use for 

inputs, production, manufacturing, retail, and transport of food is an attributable source of 

additional NOx and NH3. The food system was responsible for ~15% of 2010 fossil fuel energy use 

globally [10]. 15% of the approximately 36 Tg N yr-1 2010 NOx atmospheric emissions from fossil fuel 

use [4] is ~5 Tg N yr-1, compared to NOx ~5 Tg N yr-1 estimated from manure and field emissions [13]. 

4.1.2 Ammonia (NH3) emissions in energy use for retail and manufacturing 
Burning of fossil fuels has proportionally greater NOx than NH3 emissions by N-weight. Hence NH3 

emissions from energy use across the food system are <2% of those from direct agricultural NH3 

emissions [25]. Direct agricultural emissions of NH3 (including emissions not attributed to the food 

systems, e.g. biofuel) are >80% of global NH3 emissions [1, 4] so capturing changes in agricultural NH3 

emissions is generally more important for changes to impact. NH3 emissions from attributable energy 

use can be ignored for most large-scale impact studies. For small-scale studies, NH3 emissions from 

energy use in transport, retail, and manufacturing should be examined for their contribution to impact 

even if proportionally lower than agricultural emissions. NH3 emissions from combustion generally 

occur in closer proximity to human populations and closer to resident atmospheric NOx and sulfur 

oxide (SOx) (see below under atmospheric pathway of NH3 emissions). This implies a greater amount 

of PM2.5 production per N-weight closer to human population density than an agricultural NH3 

emission, and a greater cost per tonne of NH3 emitted. 

4.2 Air, water, and soil pathways of Nr emissions and damages 
Sources for primary emissions of Nr to atmosphere are described in (Figure 1). A complex of 

secondary chemical reactions in the atmosphere and from deposition on land and ocean is called the 

nitrogen cascade [2] (Figure 2). Nr products that deposit on land, waterways, and ocean (as NHx and 

NOy) result in damage to ecosystems [8] and secondary emissions of NH3, NOx and N2O [26] before 

denitrification [27]. Nr is being produced more rapidly than it is being converted back to inert N2 

(78% of the atmosphere). In ecosystems that may be some distance from primary emission sources 

(Figure 4), Nr is accumulating in the environment [8]. The ocean is a major sink [28]. Impact from the 

nitrogen cascade may increase in the future as terrestrial and marine sinks of Nr saturate. 

A consequence of the nitrogen cascade, and a complication for costing impacts, is that the same 

nitrogen emission produces compounds that can damage human health and ecosystems several 

times (Figure 2 b. and Table 3 in [2] illustrate), and in several forms of nitrogen compounds from 

primary emission and secondary deposition (which can lead to tertiary emissions of NH3, NOx and 

N2O to air). 
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Figure 2: Two representations of the nitrogen cascade. Panel a. adapted from [2]. Panel b. from the European Nitrogen 
Assessment [29]. The dashed box in each panel represents the scope of Figure 1, i.e. Nr flux to primary emissions. In Panel a, 
red values indicate global 2010 anthropogenic Nr emissions according to [2]. In Panel b. roman numerals indicate global 
anthropogenic Nr flux, and italic numerals indicate EU-27, for 2011. For damage costing, a representation of the nitrogen 
cascade from primary emissions is given in Figure 5. 

4.2.1 NH3 atmospheric primary emission 
Ammonia (NH3) is a major component in producing particulate matter PM2.5 (as ammonium nitrate 

when binding with NOx and ammonium sulphate when binding with SOx) [8]. NH3 emitted to 

atmosphere undergoes chemical reactions or is dispersed within 24 hours, but the PM2.5 produced 

is transported over days or weeks in the atmosphere [30] and inhaled by humans and animals. It is 

estimated that ammonium, sulphate, and nitrate, form about a third of global particular matter 

(PM2.5) [31]. A 2021 United States (US) attribution study found food production responsible for 

~16000 of 2015 US air pollution deaths [32] (Figure 3), which is 16% of deaths of the US total 

attributable to air pollution [33]. NH3 emissions attributed to food production were responsible for 

~75% deaths in the study and 12% of total US air pollution deaths [32]. Dust (tillage and soil erosion 

from livestock) was the next major contributing factor (22% of air pollution deaths attributable to 

food production) and 3% of total. Dust should be considered under the costs of soil erosion. Deaths 
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in the US study were highly spatially concentrated according to population density and proximity of 

agricultural production. 

 

Figure 3; Source and caption: Fig 1 in [32]. “Annual premature US deaths attributed to increased atmospheric PM2.5 from US 
agriculture. Five alternate categorizations (columns) are shown: pollutant, process, commodity, product, and source. 
Pollutants include primary PM2.5 and secondary PM2.5 formed from precursor gases (NH3, NOx, NMVOCs, and SO2). The 
height of each black bar within each column corresponds to the number of attributed deaths; deaths within each column sum 
to 17,900.” 

Attributable deaths from NOx emissions were low in the US study (<1%). Fossil fuel use for fertiliser 

production and agricultural equipment were counted, but not transport, manufacturing and retail in 

the food sector. NOx and SOx emission have been regulated for transport, energy, and 

manufacturing, in many countries, including the US. NH3 has not. A Chinese study (1970-2008) 

attributed ~43% of total damages from atmospheric Nr emission to agricultural NH3 and ~7% to 

food system NOx emissions including energy use [34]. At larger scales and for full scope of the value 

chain, the NH3 emissions will be expected to produce >80% food system human health damage 

costs compared to NOx. At smaller scales and partial scope, the ratio of NH3 and NOx damages 

depends on the proximity of sources of combustion, burning, and energy use compared to 

agricultural emissions (e.g. Figure S7 in [34]). 

When redeposited on land and waterways ammonia produces soil acidification and nitrates that 

contribute to biodiversity loss and eutrophication [1, 25, 35]. This is further described below. 

Secondary emission of N2O occurs from deposition, leading to climate impacts.  

4.2.2 NOx atmospheric primary emissions 
Atmospheric reactions involving emitted NOx increase tropospheric ozone (O3) [2]. O3 acts as a GHG 

producing radiative forcing, has human health impacts, and losses to crop yields [8, 36-38]. NOx 

creates smog and binds with NH3 to produce ammonium nitrate and other particulate matter that 

induces human health impacts [8]. In addition to NOx emissions from energy and transport use in 

the food system, direct NOx exposure of agricultural or food manufacturing workers, or food 

preparation from biomass burning, has human health impacts [39, 40]. Deposition of Nr from the 

nitrogen cascade of emitted atmospheric NOx contributes to secondary damage pathways. 
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Figure 4: Source and caption: Figure 1 in [8]. “Distribution of atmospheric Nr deposition and exceedance of deposition levels 
in the period 2000–2030 on Protected Areas (PAs) under the Convention on Biological Diversity. Red PAs show an exceedance 
of 10 kg N ha-1 yr-1 and deposition in 2030 higher than 2000. Orange PAs show a current exceedance, but deposition in 2030 
lower than 2000. Yellow PAs might be under threat since Nr deposition exceeds 5 kg N ha-1 yr-1, but is increasing over the 
period 2000–2030.” 

4.2.3 Nr secondary atmospheric deposition to land 
Atmospheric Nr from primary NH3 and NOx emissions is deposited widely on terrestrial and aquatic 

ecosystems as ammonia, nitrous oxides, ammonium compounds, nitrites, nitrous acid, nitrates, and 

nitric acid (NHx and NOy) [41]. Nr compounds delivered to terrestrial systems cause impact through 

reactions with soil and vegetation, re-emission into the atmosphere, or in waterways and then 

marine systems through run-off. Deposition can be wet (with precipitation) or dry; mechanisms 

which generally deposit similar amounts of Nr [42]. Most natural systems are N-limited, meaning 

that biomass increases with additional Nr, and are vulnerable to acidification. 

Damage in terrestrial ecosystems arise from acidification of soils [43] and changes to vegetation 

[44]. Ecosystem services in natural forests and grasslands are impacted by acidification through 

biodiversity loss in soils, change in soil structure, and inhibited growth [45]. N sensitive plants and 

microbiomes are reduced and growth is elevated for nitrophiles, changing the balance of vegetation 

and eventually the ecosystem fauna and flora [44, 46]. 

Acidification of cropland soils [47] results in direct agricultural losses and reduction in soil 

biodiversity, enhancement of existing stressors, contributes to soil erosion, and can effect carbon 

and nitrogen fluxes [48]. 

4.2.4 Nr primary and secondary emissions to water ways and soils 
From direct application on cropland and grassland, or from atmospheric deposition on cropland, 

grassland, forests, other terrestrial biomes, surplus Nr leaches from soil into groundwater or is 

transported in surface run-off into riverine systems [2, 9]. 

Leaching or run-off can be the dominant source of Nr pollution, depending on the site [49]. 

Accumulation in soil, N pools and leaching can occur over decades and become a primary source in N 

water pollution [49]. Other study sites show correlations between wet Nr deposition and riverine Nr 

concentrations; regression implying a >20% contribution of deposition to total riverine export from 

the study catchment [50, 51]. 

The main form of Nr transported in groundwater and surface freshwater is soluble nitrate NO3- [52]. 

Nitrate NO3- is either consumed by humans and fauna in extracted groundwater, or from surface 

freshwater polluted by both run-off and re-combination with groundwater [8, 9]. Ingestion of NO3- 
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through contaminated groundwater has been associated to infant methemoglobinemia, colorectal 

cancer and thyroid disease [53, 54]. However, the human health and economic effects of and nitrate 

are less well understood than exposure to particulate matter and ozone [55]. The major exposure of 

nitrate, except in very high concentrations in drinking water, is through vegetable consumption [56]. 

Around 40% of Nr input to freshwater is transported to marine environments, though there is large 

uncertainty in denitrification sinks during transport [22]. Depending on the climate conditions, 

specifics of the water body and the nature of the Nr deposition in the catchment (synthetic fertilizer 

or manure management), Nr will either be denitrified in ecosystems along the water way, or collect 

in freshwater bodies, or reach coastal systems. Excessive Nr can cause freshwater and coastal 

eutrophication and acidification [9]. 

Acidification 

Acidification of freshwater bodies, wetlands, coastal and marine environments results in inhibited 

growth and losses to invertebrates and fish [57]. Freshwater wetland and bodies can be more 

vulnerable due to lower acid neutralizing capacity [8, 57]. Species composition at the base of the 

food chain is shifted toward acid-tolerant macrophytes and phytoplankton, resulting in biodiversity 

loss and alterations in higher trophic levels.  

Coastal and ocean acidification from deposited ammonium compounds (acidifying) and ammonia 

(alkalising) is small compared to acidification through CO2 drawdown, but amplified in coastal 

regions with the greater concentration of Nr from leaching and run-off [58]. Though coastal and 

ocean environments have higher acid neutralizing capacity, and marine organisms are more acid 

tolerant, high value ecosystem services and biodiversity in coastal systems such as coral reefs can be 

impacted [59]. 

Eutrophication 

Freshwater bodies and coastal systems can experience aquatic eutrophication, resulting in a loss of 

ecosystem services to humans, directly, or a loss of services through effects on surrounding 

ecosystems [60, 61]. As with terrestrial vegetation, Nr loading results in species selection and 

biodiversity loss. Eventually, low-diversity algal or bacterial populations can dominate surface 

waters, limiting sunlight and depleting oxygen from water below the surface. Hypoxic (low oxygen) 

and anoxic (no oxygen) water stratifies below the surface killing plants, communities in sediment, 

coral reefs in coastal systems [62], and animals, resulting in “dead zones” [63, 64]. 

Eutrophication does not occur in the open ocean. Most of the accumulation of anthropogenic Nr in 

the ocean is from atmospheric deposition [28]. The effects of an ~3% increase in annual marine 

biological production attributed to anthropogenic deposition and transport of Nr [28], including an 

~0.4% increase in ocean carbon sequestration [65], are discussed in correlations in Section 4.5 

below. 

Surplus Nr in riverine and coastal systems, from primary water emission or secondary atmospheric 

deposition, provides an increasing background Nr input to aquaculture (estimated globally at ~12 Tg 

N-1 [15], with 66% of this input to Chinese coastal environments). Growth in coastal food sources 

from the increased Nr input produces financial gain from aquaculture enterprise but can turn to 

collapse and financial loss with hypoxic events. Indicating, as with other environmental marginal 

costings, the non-linear nature of marginal costs as a function of total emissions to the aerial or 

water catchment of the impacts. 
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Aquatic eutrophication is increased by the anthropogenic emission of other soluble nutrients, 

particularly phosphorous [66, 67]. Eutrophication can reduce denitrification in sediment, resulting in 

positive reinforcement and increasing Nr saturation [68]. 

4.3 Attribution and Damage costs 
Estimates of the damage costs of NH3, NOx, and NO3 primary emissions require sophisticated 

modelling of the nitrogen cascade to determine the exposure of humans and ecosystems to 

intermediate quantities such as aerosol particulates, response factors such as the vulnerability of 

exposed populations to respiratory stress, and costs such as economic consequences of respiratory 

disease. N2O damage arises from residence in the atmosphere. Damage costs for the climate change 

effects of N2O are discussed in Annex A – GHG. The major pathways to damages from Nr emissions, 

described in the previous section and assessed in synthesis studies (see e.g. Figure 2 in [8] and Figure 

2 in [69]), are summarised in Table 1 and Figure 5. 

 

Figure 5: Source: Author. Representation of atmospheric, terrestrial, and aquatic impact pathway of primary Nr emissions 
summarised in Table 1. Primary atmospheric emissions of NH3 and NOx have some joint interaction to form particulate 
matter. NOx emissions produce tropospheric ozone. NHx and NOy compounds deposit on land, water bodies, and marine 
environments. Deposition can produce secondary vaporization and emissions of N2O, NH3 and NOx. Deposited Nr produces 
terrestrial, freshwater, and coastal impacts, and contributes to the direct flow of, mainly, soluble primary emissions of NO3- 
into the environmental through run-off to riverine systems and leaching into groundwater of applied Nr and Nr from waste. 
Connection of impact pathway of primary emissions to origins in Figure 1 shown by emissions factors between application, 
surplus, and emissions. Ambiguity and variance in costing impacts of Nr can arise through the quantity of impact being treated 
as an implied input of Nr (e.g. kg of synthetic fertiliser used or manure, kW of fossil fuel sourced energy used), Nr surplus from 
application (e.g. Tg N surplus to fields from inputs, Tg N embedded in outputs as virtual Nr). Both the matrices of emission 
factors (EF - grey) that translate from implied inputs to Nsur, and Nsur to Nr emissions, and the amount of damages from Nr 
emissions (black), are context dependent.  

Costing of marginal damages from Nr emissions have concentrated on the European Union [70, 71], 

the United States [72], and China [73]. Detailed damage estimates have concentrated on climate 

impact, crop losses from tropospheric O3 [38], and human health impacts of air pollution, due to the 

maturity of atmospheric Chemical Transport Models (CTMs) and economic estimates [74, 75]. 

Attribution of multicausal outcomes such as disease and damage to humans from particulate matter, 

ozone, or other intermediaries of impact from Nr emissions, is based on assembled evidence from 
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univariate control studies or regression analysis [76, 77]. Some CTMs have reduced complexity and 

attribution to health impact in the form of Disability-Adjusted Life Years (DALYs) built into the model 

[78]. Attribution of Nr pollution in waterways is highly variable with the most robust estimates using 

spatially explicit hydrological models [49, 79]. Some costings do not include ecosystem losses from 

secondary deposition and run-off [80], because of the uncertainty and less developed methods for 

attributing Nr emissions to loss of ecosystem services and costing the loss of services [81]. 

Total average damage costs attributed to agricultural Nr emissions for the US (US$2008 210 billion), 

EU (US$2008 190 billion) and China (US$2008 54 billion) for Nr emissions are >1.4% GDP in 2008 for 

each region respectively [34, 70, 72, 73]. In the US and EU the cost of agricultural Nr emissions 

exceeded the value of agricultural commodities produced. 

The study [72] of the US did not estimate abatement costs. Other studies indicate an average 30% 

abatement of N application in agriculture would optimise the value to society of N application [34, 

70, 82]. The optimality in [70] was determined by using an abatement cost of atmospheric Nr 

pollution in IIASA’s GAIN model, no abatement cost of run-off of leaching of Nr was included. In [82] 

the abatement cost was given by the loss of agricultural yield. Without a more complete 

examination of abatement measure for N (see mitigation costs below), it is unclear whether more 

detail in N efficiency measures offer cheaper abatement and hence a higher optimal reduction 

target.  

4.3.1 Unit of marginal damages 
Costings of Nr usually involve an estimate of the damage cost per unit of input, surplus, or emission 

at a location, and multiplication by the quantity of inputs, surplus, or emissions at that location. The 

marginal cost per unit has been estimated at the level of all these quantities, e.g. damage per kg  

(per hectare) of fertiliser input [83] ([84]), dollars of damage or abatement per unit of surplus [85, 

86], and dollars of damage per kg of emission [70]. Even if emissions occurred at the same locations, 

to be comparable, costings between inputs, surplus, and emissions as the unit quantity for marginal 

damages would need to be converted by the Emission Factors (EF) of the specific fertilisers, 

productions processes, management practices, and locations [87]. 

Location factors can include climatic or soil conditions that can result differences in quantities of 

NH3 or NO3- emitted from Nr surplus, higher rates of denitrification, etc. EFs are used by actors 

(e.g., IPCC Tier 1 ) to simplify calculation of Nr emissions for national accounts and at farm level [88]. 

The EF matrices are generally not invertible. The damage cost per unit of emission of NH3 and NOx 

to air, and Nr to soil and surface water at a spatial location is less dependent on the contextual 

factors of the actor and their operations, and more suitable to standardise. We provide estimates of 

damage costs per unit of emission below. Tables of EFs for atmosphere are available and open 

source [89]. EFs for run-off and leaching emissions are less well developed [49]. Calculating Nr 

emissions using EFs should be the responsibility of emitting parties as part of disclosure of nitrogen 

impacts. 

Unlike climate damages from GHG emissions, actors need to be aware of appropriately estimating 

the damage cost per unit of Nr emission at the location of emission.  or an example, for a “Scope 3” 

damage cost exercise, there may be large variation between the upstream damage cost per unit of 

rural NOx emissions from crop and manure management practices, and downstream urban NOx 

emissions from combustion. 
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Table 1: Major impact pathways of NH3, NOx and NO3 emissions for damage cost estimates.   

Emission Intermediatory Effect Impact Cost 

NH3 Ammonium (NH4) 
compounds formed 
through 
atmospheric 
reactions 

Air pollution 
(PM2.5) 

Human respiratory 
DALYs 

Disease 

 Deposition of NHx 
(see below) 

   

NOx Tropospheric ozone 
(O3) formed 
through 
atmospheric 
reactions 

Air pollution Human respiratory 
DALYs 

Disease 

 - - Physiological 
impairment of 
plant growth  

Crop losses 

 Deposition of NOy 
(see below) 

   

 Deposition on land 
of cascade from 
NH3 and NOx air 
emissions 

Reactions from 
deposited Nr 

Acidification 
(cropland) 

Crop losses 

 - - Acidification (non-
cropland soils) 

Ecosystem 
Services 

 - Increased 
Biological 
Production 

Biodiversity Loss 
(terrestrial) 
 
Fertilisation 

Ecosystem 
Services 
 
Crop gains 

 Run-off or leaching 
of Nr deposition on 
land (see below) 

   

NO3 Run-off or leaching 
from (a) Production 
or processing, 
(b) Deposition of Nr 
compounds on 
land, and (c) 
Deposition on 
water of cascade 
from NH3 and NOx 
air emissions 

Increases nitrates 
in drinking water – 
ground and surface 
(NO3-) 

Human toxicity 
DALYS 

Disease 

 - Reactions from 
deposited Nr 

Acidification 
(freshwater) 

Ecosystem 
Services 

 - - Acidification 
(coastal) 

Ecosystem 
Services 

 - Increased 
Biological 
Production 

Eutrophication 
(freshwater) 

Ecosystem 
Services 

 - - Eutrophication 
(coastal) 

Ecosystem 
Services 
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4.3.2 Variance in marginal damages 
Specifics of fertiliser composition, productions processes, management practices, and climatic and 

soil conditions, in addition to volume of agriculture activities, creates variation in the amount of 

emissions. The marginal damages are functions of emissions, in that higher emissions are expected 

to contribute greater costs per tonne of emission from increased background exposure of humans 

and ecosystems. Spatially explicit marginal damage costs may be functions of total Nr emissions at 

differential spatial aggregate levels. The total emissions at the same site, the total Nr emissions to 

the same water catchment, and the total Nr emissions received by exposed human populations, may 

all increase in the marginal costs of damage. The relationship is not linear, the increase of damage 

costs at extreme levels of local emissions, without high aggregate levels in the surrounding region, is 

unclear. Once local damages saturate the rate of change of marginal damages depends on the 

extent of the spread of dead zones [64], longer distance transport from high concentrations of 

particulate matter [90], or contagion from ecosystem loss [91].  

Marginal costs vary with additional spatial and contextual factors involved in a chain of exposure, 

response, and economic impact that are only weakly associated to the quantity of Nr emissions. 

Exposure includes exposure of humans and ecosystems to intermediate quantities such as aerosol 

particulates, which may be more abundant from the same unit of NH3 emission because of climatic 

conditions. Response includes factors such as the vulnerability of exposed populations to respiratory 

stress, such as coincident exposure to NOx from rubbish burning or biomass burning for cooking, or 

coincident Cardio-Vascular Disease (CVD) risks from Non-Communicable Diseases (NCDs). Economic 

impacts of respiratory disease can vary due to safety nets, insurance, and other factors. 

Studies on the marginal damage cost of Nr emissions for the European Union [70] and the United 

States [72] use fixed marginal damage costs for components of the nitrogen cascade without spatial 

variation across the EU member states of 2008 and across the contiguous US. The study [72] used 

most marginal damage estimates from [70] and [69]. Variation in the total damages in [70] arises 

from estimated variation in the totals for emissions, deposition and run-off. Since proportion of 

deposition and terrestrial run-off of 1 tonne of NH3 or NOx primary atmospheric emission are 

components of the impact pathway in Figure 5, then spatial variation in deposition and run-off is one 

component of variation in marginal damage cost of Nr emission of a unit of NH3, NOx to 

atmosphere, or Nr to waterways.  

A more complete examination of the variation in marginal damage costs due to location of 

emissions, environmental conditions of the emission, variation in the amount of intermediates such 

as ammonium compounds and ozone from 1 tonne of NH3 or NOx primary atmospheric emission, 

deposition, and variation in the distribution of downwind or downstream exposure of vulnerable 

people or ecosystems, is considered in [83]. Additional variation in the components of Figure 5 were 

represented at a county level for Minnesota in the US [83]. Marginal damage costs for N application 

varied from $0.001 /kg to >$10 / kg, indicating the high degree of variance in marginal damage costs. 

To scale to global spatially explicit marginal damage costs for NH3, and NOx and NO3- that capture 

the range of damage costs highlighted by [83], reduced complexity models of atmospheric transport 

(such as the Intervention Model for Air Pollution (InMAP) [78]) with data on background precursors 

to ammonium compound formation, coupled to hydrological models of transport of run-off (e.g. Soil 

& Water Assessment Tool (SWAT) [92]) can calculate spatially explicit exposure from a unit of 

emission. The exposure levels can be integrated against spatially explicit distributions of the 

receivers of impacts (human population density, crops, ecosystems). Human health response to 
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PM2.5 and ozone is well quantified, as are crop values. The economic effect of ecosystem service 

loss from acidification and eutrophication may need an additional calculation using a model such as 

InVEST [93]. 

4.3.3 Summary of difference between damage costs of GHG emissions and Nr emissions 
Ignoring distributional issues of asymmetric cost-bearing of damages, costing GHG emissions does not 

have the spatial variability of costing Nr emissions. There is one global marginal damage cost estimate 

for CO2 emission at any spatial location on the surface of the earth. Other comparisons between the 

marginal damage costs of GHG emissions and Nr emissions [83]: 

• (C) Costs associated with the global atmospheric pool and global change in radiative forcing and 

hence temperature and precipitation. (N) Costs associated with local N pools and transport 

through and on air, land, surface water, ground water and coastal waters, with local changes in 

intermediaries and through multiple local terrestrial and aquatic chemical and biological 

processes that produce impact. 

• (C) The most damaging impacts are in the future, and uncertainty is mostly associated to 

comparing future economic costs to economic benefits in the present. (N) With the exception of 

leaching of NO3- from soil to groundwater, which can take decades, the damage from present Nr 

emissions can be observed in nearer term impacts on humans and ecosystems within a 

generation. Major uncertainty is associated to spatial variability and complexity of the impact 

pathways, which can include intercountry spatial issues of comparison of value (e.g. 

transboundary damage from Nr emission) rather than temporal issues. 

4.3.4 Ambiguity in damage costing 
Present damage costs from [70] and [69] use a range of valuation methods to estimate economic 

damages. For example, crops use market value, nitrate sometimes uses water treatment cost (an 

abatement cost for DALYs) instead of economic damage from DALYs. Abatement costs are generally 

lower than damage costs. Costing DALYs from human health loss ranges from Willingness To Pay 

(WTP), which are generally higher than an indicator of damage to the economy such as productivity 

losses. Conceptually, these damage costs are not interchangeable, some represent realised costs 

absorbed into an economy (losses or treatment), and others directly or indirectly stated preferences 

of individuals where there is large uncertainty whether the stated amounts would be paid. 

Without a specific effort to be consistent within each end impact on social preferences, damages, or 

abatement, ambiguity from the valuation method in current estimates must be absorbed in the 

uncertainty in marginal damage costs of Nr emissions. WTP is treated as a potential overestimate of 

economic damages, and abatement values treated as a potential underestimate of damages, though 

the reverse is also possible. 

4.3.5 Calculation of marginal damage costs 
Calculating global spatially explicit marginal damage costs using coupled models was not available 

for the study. Instead, we used the only costs estimates published ([70] [72]) for components of the 

nitrogen cascade. Table 2 lists the marginal damage cost components of the impact pathway and 

their estimated range [70] [72]. The references give prices for studies in the European Union 

between 1995 and 2005 without adjustment for purchasing power. In Table 2 we therefore inflated 

to US$2020 and extended the lower range for increase in purchasing power from 2005 (inflation and 

rise in consumer price indices), and the upper range from 1995. 
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Table 2: EU damage costs from [70] for components of the nitrogen cascade (with sources of estimation Table S1 in [70]). 
Range inflated to equivalent purchasing power in US$2020 PPP. N2O damage costs included in Annex A GHG, and adjustments 
to marginal social costs of GHG emissions due to interactions between the N and C cycles factor into the correlations discussed 
in Section 4.5. *=high uncertainty in estimates of ecosystem damage through water pathways, see text. 

Damage 
Nr 

emission 
Component 
of Pathway 

Sym-
bol 

Estimate 
US$2020 PPP 

kg-1 

min max 

Air Pollution Human Health DALY (PM2.5) NH3 Air 𝑚𝑎,𝑁𝐻3 4 50 

Ecosystems (acidification, eutrophication, 
biodiversity) 

NH3 Deposition 
on Land 

𝑚𝑙,𝑁𝑟 2* 15* 

Ecosystems (acidification, eutrophication, 
biodiversity) 

NH3 Deposition 
on Surface 
water 

𝑚𝑤,𝑁𝑟 5* 25* 

 

Air Pollution Human Health DALY (PM2.5 
and O3) 

NOx Air 𝑚𝑎,𝑁𝑂𝑥 20 70 

Crop loss (O3) NOx Air 𝑐𝑎,𝑁𝑂𝑥 2 5 

Ecosystems (acidification, eutrophication, 
biodiversity) 

NOx Deposition 
on Land 

𝑚𝑙,𝑁𝑟 2* 15* 

Ecosystems (acidification, eutrophication, 
biodiversity) 

NOx Deposition 
on Surface 
water 

𝑚𝑤,𝑁𝑟 5* 25* 

 

Ecosystems (acidification, eutrophication, 
biodiversity) 

Nr Run-off to 
Surface 
water 

𝑚𝑤,𝑁𝑟 5* 25* 

Human health (drinking water) Nr 
(nitrate) 

Leaching to 
Groundwater 

𝑚𝑔,𝑁𝑟 0 10 

 

Climate change N2O Air SC-
N2O 

GHG GHG 

Human health (UV radiation from 
stratosphere O3 depletion) 

N2O Air 
- - - 

Interactions between N and C cycles, 
effect on N and C fluxes (emissions, 
sequestration, denitrification, and 
radiative forcing) 

NH3, NOx 

- - 

corr corr 

 

European and US total damage cost estimates of N pollution are calculated by estimating the 

amount of air emissions, deposition on land and surface water from NH3 and NOx air emissions, 

primary leaching and run-off to water sources and multiplying them using the marginal costs in Table 

2. To form country level estimates of marginal damage costs for NH3 and NOx food system 

emissions to air: 

(a) Global datasets of nitrogen emission and deposition were used to estimate the weight in kg 

of Nr compounds deposited on land and surface water resulting from 1kg of NH3 or NOx 

emitted to air, and the amount in kg of 1kg of Nr run-off and shallow groundwater leaching 

that is retained in riverine systems and the amount exported to coastal water systems. 
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(b) Population density, total NH3, NOx and SOx emissions, as well as temperature are primary 

factors for exposure to air particulate matter [94] [83] [95]. We fitted a statistical model to 

existing explicit modelling of damages across US states [95], allowing us to transfer 

𝑚𝑎,𝑁𝐻3/𝑁𝑂𝑥 to country level adjustment to air pollution costs 𝑚𝑖,𝑎,𝑁𝐻3/𝑁𝑂𝑥  for country 𝑖. 

 Crop losses are also adjusted by relative proportions of total value in international dollars 

Purchasing Power Parity (PPP) of crops 𝑐𝑖,𝑎,𝑁𝑂𝑥 using data on the producer price index from 

Food and Agriculture Organisation Statistical Database (FAOSTAT). 

(c) From lack of data we adjust 𝑚𝑙,𝑁𝑟  and 𝑚𝑤,𝑁𝑟  from Table 2 to estimates for 𝑚𝑖,𝑙,𝑁𝑟  and 

𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟  and 𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟 for country 𝑖 that assumes a constant disutility of ecosystem 

service losses to Nr deposition on land and Nr surface water run-off that is retained in 

riverine systems and exported to coastal systems, respectively. Similarly, 𝑚𝑔,𝑁𝑟  has a 

country level adjustment 𝑚𝑖,𝑔,𝑁𝑟 that maintains constant disutility of human health loss to 

nitrate pollution [96]. 

Compared to air emissions and human health impacts, there are few studies on acidification, 

eutrophication, and biodiversity costs from Nr run-off and leaching [70, 97-99]. The estimate in Table 

2 for 𝑚𝑤/𝐼,𝑁𝐻3/𝑁𝑂𝑥/𝑁𝑟 comes from a sole study on restoration costs and the upper margin is 

arbitrarily set in [70] at 5 times the restoration amount. Factors identified in costs of Nr run-off and 

leaching in studies in high income countries include property loss [100], and to a lesser extent the 

denial of freshwater resources for agricultural and industry use. Costings have not been related to 

hydrological models, in the same manner as chemical transport models have for air pollution, 

therefore there are no available test sets for statistical modelling and appropriate value transfer. The 

costs to ecosystems through Nr run-off and leaching to groundwater remain the most uncertain 

components. As a conservative estimate, we halve the amounts from [70] in Table 2. 

Table 6 lists the marginal damages costs for NH3 and NOx emitted to air, and Nr run-off to surface 

water and leaching to groundwater, calculated from Table 2 as follows: 

Marginal damage cost Nr leaching to groundwater 

Global spatial datasets are available of Nr leaching to groundwater given soil application or 

deposition of Nr [101], [102]. There is considerable lag-time before NO3- leaches into deep 

groundwater [103]. The proportion of Nr leached and the time it takes relate to soil properties, 

mineralization sub-surface, and saturation of existing nitrogen pools [102, 104]. Factors related to 

impact are discounting from the time at which human health effects occur to the time of the 

exposure to the concentrated levels of leached NO3-. Furthermore, the time at which the NO3- 

leached to the groundwater has to be discounted back to the time of the  previous application. 

Following [83], Nr leached amounts are discounted over 20 years: which we assume is 10 years for 

lag and 10 years for emergence of symptoms. 

Concentrations of NO3- differ between surface water and aquifers [103]. Without spatially explicit 

modelling of marginal addition to existing concentrations and exposure of human populations 

between surface and groundwater sources [83], the quantity of emissions acts as a proxy for 

concentration and the same marginal damage cost 𝑚𝑔,𝑁𝑟 is used, besides the discounting difference. 

A national level marginal damage cost (US$2020 PPP kg-1) from a kg of Nr leached to deep 

groundwater somewhere within country 𝑖 is 

𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟 = 𝑚𝑖,𝑔,𝑁𝑟 = 𝜌𝑖 ⋅ 𝑚𝑔,𝑁𝑟 (1) 
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where 𝜌𝑖 is a parity term including discounting over 20 years and conversion from high income GDP 

PPP per capita to mean GDP PPP per capita within the World Bank income bracket of country 𝑖.  

This choice of 𝜌𝑖 is equivalent to the assumption that the disutility of human health loss to nitrate 

consumption per kg of Nr leached is constant across countries [96] at any given future time 𝑡 of 

health effect. That is, if 𝐷𝐴𝐿𝑌𝑠(𝑖, 𝑡) = 𝛼𝑔 ⋅ 𝑛𝑖,𝑔,𝑁𝑟(𝑡) disability adjusted life years are attributed to 

nitrate consumption from Nr leaching (where 𝛼𝑔, a disutility factor defining the relationship 

between the amount of nitrate leached and the resulting DALYs, in units of ppl kg-1 has been 

assumed constant) at time 𝑡 at a cost of 𝐶𝐹𝑖(𝑡) GDP ($US2020 PPP) per capita for each DALY, then 

𝑚𝑖,𝑔,𝑁𝑟(𝑡) 𝑛𝑖,𝑔,𝑁𝑟(𝑡)

𝑚𝑔,𝑁𝑟 (𝑡) 𝑛𝑔,𝑁𝑟(𝑡)
=

𝐷𝐴𝐿𝑌𝑠(𝑖, 𝑡)𝐶𝐹𝑖(𝑡)

𝐷𝐴𝐿𝑌𝑠(𝐸𝑈, 𝑡)𝐶𝐹𝐸𝑈(𝑡)
  

and 

𝑚𝑖,𝑔,𝑁𝑟(𝑡) =
𝐷𝐴𝐿𝑌𝑠(𝑖, 𝑡)

𝑛𝑖,𝑔,𝑁𝑟(𝑡)

𝑛𝑔,𝑁𝑟(𝑡)

𝐷𝐴𝐿𝑌𝑠(𝐸𝑈, 𝑡)

𝐶𝐹𝑖(𝑡)

𝐶𝐹𝐸𝑈(𝑡)
⋅ 𝑚𝑔,𝑁𝑟(𝑡) =

𝐶𝐹𝑖(𝑡)

𝐶𝐹𝐸𝑈(𝑡)
⋅ 𝑚𝑔,𝑁𝑟(𝑡). 

To transfer costs under the assumption of equivalent disutility, neither 𝐷𝐴𝐿𝑌𝑠(𝑖, 𝑡) nor 𝛼𝑔 needs to 

be calculated. If 𝑚𝑔,𝑁𝑟(𝑡) and 𝐶𝐹𝐸𝑈(𝑡) are assumed to both appreciate with the same factor, then 

𝑚𝑖,𝑔,𝑁𝑟(0) = ((1 + 𝑑𝑖(𝑡))
−𝑡
𝐶𝐹𝑖(0)

𝐶𝐹𝐸𝑈(0)
) ⋅ 𝑚𝑔,𝑁𝑟 

where 𝑚𝑔,𝑁𝑟 is from Table 2, 𝑑𝑖(𝑡) is a discount rate described below in Section 4.3.6 and 𝜌𝑖 =

(1 + 𝑑𝑖(𝑡))
−𝑡 𝐶𝐹𝑖(0)

𝐶𝐹𝐸𝑈(0)
. The time factor is t=10 years for surface water NO3- and t=20 years for 

groundwater NO3-. 

The assumption that 𝛼 is constant, [96], does not take into account increased concentrations, 

increased exposure, and increased vulnerability to nitrate ingestion across countries outside the EU 

[55]. DALYs from nitrate leaching have not been attributed at a global level in burden of disease 

studies, and therefore there is a lack of global statistical data to estimate variance in 𝛼. 

Marginal damage cost NH3 to air 

The damage cost of 1kg of emitted NH3 in country 𝑖 comes from the impact pathway involving costs 

of air pollution (human health) and deposition on land and surface water: 

𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 = 𝑚𝑖,𝑎,𝑁𝐻3 + 𝛾𝑖,𝑙,𝑁𝐻3 ⋅ 𝑚𝑖,𝑙,𝑁𝑟 + 𝛾𝑖,𝑤,𝑁𝐻3 ⋅ 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟 (2) 

The weight factors 𝛾𝑖,𝑙/𝑤,𝑁𝐻3 were determined from a global spatial dataset of NH3 and NOx 

deposition [105] and totals of NH3 and NOx from EDGAR [6]. Cross boundary costs cannot be 

approximated by this method, the total deposition in country 𝑖 divided by the total emissions from 

country 𝑖 are taken as an approximation of 𝛾𝑖,𝑙/𝑤,𝑁𝐻3. The relationship between the N weight of NH3 

emission, and the N weight of deposition of ammonium compounds is non-linear due to 

atmospheric chemistry and the presence of NOx and SOx precursors in the atmosphere [1]. 

However, the approximation of 𝛾𝑖,𝑙/𝑤,𝑁𝐻3 was clearly distorted for small countries where deposition 

from larger neighbours far exceed domestic emissions. 13 Sub-Saharan African countries and Bhutan 

(on the border of China) had 𝛾𝑖,𝑙/𝑤,𝑁𝐻3 exceeding a value of 1, and were rescaled to a value of 

𝛾𝑖,𝑙/𝑤,𝑁𝐻3 = 1. 
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We describe adjusting the marginal damage costs 𝑚𝑖,𝑎,𝑁𝐻3 of the factor 𝑚𝑎,𝑁𝐻3 in Table 2 based on 

difference in exposure of human populations to ammonium compounds in particulate matter and 

differences in economic impacts. Adjustment involves two factors, comparative adjustment of 

current exposure, and comparative adjustment of future economic losses from human health 

impacts attributable to exposure: 

𝑚𝑖,𝑎,𝑁𝐻3 = 𝜌𝑖 ⋅
𝐶𝐹𝐴𝑖
𝐶𝐹𝐴𝐸𝑈

⋅ 𝑚𝑎,𝑁𝐻3. 

Here 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 describes an adjustment of exposure (depending on population density, as well as 

background levels of NOx and SOx) in country 𝑖 compared to the EU (the value of 𝑚𝑎,𝑁𝐻3 in Table 2 

is based on EU exposure and health costs). To adjust economic impacts from the human health 

effects of exposure, we use the same parity factor 𝜌𝑖 = (1 + 𝑑𝑖(𝑡))
−𝑡 𝐶𝐹𝑖(0)

𝐶𝐹𝐸𝑈(0)
 (t=10) described above 

for nitrate human health damage to estimate the transfer of EU societal economic health costs to 

country 𝑖. 

Attribution studies for NH3 and NOx emissions are most advanced in the EU and US – which have 

detailed datasets of the input factors need to run CTM or reduced CTM models to understand the 

atmospheric distribution of NH3 agricultural emissions, interaction with NOx and SOx to form 

ammonium compounds, and the exposure of human populations human health impacts of air 

pollution [74, 75, 78]. 

Examination of the sensitivity of the marginal costs of air pollution of NH3 (kg) from detailed 

modelling shows that population density (PopDen in ppl/km2), background levels of NOx (kg) and 

SOx (kg) are precursors for ammonium particulate formation [95]. 

We used the EASIUR regression at US county level [95] to fit a linear model in log-axes between 

population density, NH3 and background levels of NOx and SOx: (𝛽0 = 12.36, 𝛽1 = 0.434, 𝛽2 =

 −0.092, 𝛽3 = −0.357, 𝛽4 = 0.073) 

log(𝐶𝐹𝐴) (𝑃𝑜𝑝𝐷𝑒𝑛, 𝑛𝑁𝐻3, 𝑛𝑁𝑂𝑥, 𝑛𝑆𝑂𝑥)

= 𝛽0 + 𝛽1 ⋅ log(𝑃𝑜𝑝𝐷𝑒𝑛) + 𝛽2 ⋅ log(𝑛𝑁𝐻3) + 𝛽3 ⋅ log(𝑛𝑁𝑂𝑥) + 𝛽4 ⋅ log(𝑛𝑆𝑂𝑥) 

Data was available for 3106 counties, and the counties represent a wide range of combinations of 

NH3, NOx and SOx emissions (NH3 and NOx between 10^3 and 6x10^7 kg) and population density 

between 0.015 and 3000 ppl/km2. The fit is described in Section 4.10.3 : (1) the residuals were 

uniform across parameters and approximately normal (Figure 14), (2) the explanatory power was 

good (𝑟2  =  0.67) and temperature, humidity (the other significant variables in EASIUR) and 

interaction terms added slightly to the explanatory power (𝑟2  =  0.7 − 0.745), and (3) the ratio of 

comparative values was scale invariant, meaning that scaling county level emissions of NH3 and NOx 

by 2 orders of magnitude to country levels of emissions (92% of country level emissions in 2015 

ranged between 10^5 and 6x10^9 kg) did not change the adjustment estimate of exposure from the 

county level: 

𝐶𝐹𝐴(𝑃𝑜𝑝𝐷𝑒𝑛, 𝛼2𝑛𝑁𝐻3
1 , 𝛼3𝑛𝑁𝑂𝑥

1 , 𝛼4𝑛𝑆𝑂𝑥
1 )

𝐶𝐹𝐴(𝑃𝑜𝑝𝐷𝑒𝑛, 𝛼2𝑛𝑁𝐻3
2 , 𝛼3𝑛𝑁𝑂𝑥

2 , 𝛼4𝑛𝑆𝑂𝑥
2 )

=  
𝐶𝐹𝐴(𝑃𝑜𝑝𝐷𝑒𝑛, 𝑛𝑁𝐻3

1 , 𝑛𝑁𝑂𝑥
1 , 𝑛𝑆𝑂𝑥

1 )

𝐶𝐹𝐴(𝑃𝑜𝑝𝐷𝑒𝑛, 𝑛𝑁𝐻3
2 , 𝑛𝑁𝑂𝑥

2 , 𝑛𝑆𝑂𝑥
2 )

, 𝛼2, 𝛼3, 𝛼4 > 0 . 

With 𝑛𝑁𝐻3
1 , 𝑛𝑁𝑂𝑥

1 , 𝑛𝑆𝑂𝑥
1  and 𝑛𝑁𝐻3

2 , 𝑛𝑁𝑂𝑥
2 , 𝑛𝑆𝑂𝑥

2  referring to different levels of NH3, NOx and SOx 

respectively. From the chemistry of ammonium nitrate and ammonium sulphate formation, the 
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regression for NH3 is negative for increasing 𝑛𝑁𝐻3 and 𝑛𝑁𝑂𝑥 levels given existing concentration of 

NOx in the atmosphere, which is why scale variance is important and the linear regression is applied 

to the interpolation of country NH3, NOx and SOx within the scaled ranges. Interaction and 

quadratic terms (𝑟2 = 0.73) provided more potential to extrapolate from the county data, but not 

scale invariance of the ratio. 

One way to view the scaling assumption is: (1) dividing a country into US county size cells 

(approximately into 30 arcmin by 30 arcmin cells), (2) assuming the US county level relationship 

holds on average in that cell using the national population density, (3) background emissions in the 

cell equal the national NH3, NOx and SOx emissions divided by the number of cells. The air pollution 

exposure for the country is the average across cells. Details on scaling the uncertainty for the ratio 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 is discussed in Section 4.3.6. 

The mean value for the ratio 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
, explicitly, under the given assumptions, is 

𝐶𝐹𝐴𝑖
𝐶𝐹𝐴𝐸𝑈

= (
1

27
∑ exp (𝛽1 ⋅ (log(𝑃𝑜𝑝𝐷𝑒𝑛𝑘) − log(𝑃𝑜𝑝𝐷𝑒𝑛𝑖))

k∈EU27

+ 𝛽2 ⋅ (log(𝑛𝑁𝐻3,𝑘) − log(𝑛𝑁𝐻3,𝑖)) + 𝛽3 ⋅ (log(𝑛𝑁𝑂𝑥,𝑘) − log(𝑛𝑁𝑂𝑥,𝑖))

+ 𝛽4 ⋅ (log(𝑛𝑆𝑂𝑥,𝑘) − log(𝑛𝑆𝑂𝑥,𝑖))))

−1

 

where 𝑃𝑜𝑝𝐷𝑒𝑛𝑖  is the population density of country 𝑖, 𝑛𝑁𝐻3,𝑖 is the emission in kg of NH3 of country 

𝑖,  𝑛𝑁𝑂𝑥,𝑖  is the emission in kg of NOx of country 𝑖,  𝑛𝑆𝑂𝑥,𝑖  is the emission in kg of SOx of country 𝑖,  

and the summation 𝑘 runs over the EU27 countries of 2008. 

Marginal damage cost NOx to air 

The damage cost of 1kg of emitted NH3 comes from the impact pathway involving costs of air 

pollution (human health) and deposition on land and surface water: 

𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥 = 𝑚𝑖,𝑎,𝑁𝑂𝑥 + 𝑐𝑖,𝑎,𝑁𝑂𝑥 + 𝛾𝑖,𝑙,𝑁𝑂𝑥 ⋅ 𝑚𝑖,𝑙,𝑁𝑟 + 𝛾𝑖,𝑤,𝑁𝑂𝑥 ⋅ 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟 (3)  

𝑐𝑖,𝑎,𝑁𝑂𝑥 is the attributable damage to cereal crops from ozone production due to a 1kg atmospheric 

emission of NOx for country 𝑖. The weight factors 𝛾𝑖,𝑙/𝑤,𝑁𝑂𝑥 were determined from a global spatial 

dataset of NH3 and NOx deposition [105] and totals from [6]. Cross boundary costs cannot be 

approximated by this method, the total deposition in country 𝑖 divided by the total emissions from 

country 𝑖 are taken as an approximation of 𝛾𝑖,𝑙/𝑤,𝑁𝑂𝑥. 

We adjusted the marginal damage costs 𝑚𝑖,𝑎,𝑁𝑂𝑥 of the factor 𝑚𝑎,𝑁𝑂𝑥 in Table 2 using the same 

procedure as for NH3. Adjustment involves two factors, comparative adjustment of current 

exposure, and comparative adjustment of future economic losses from human health impacts 

attributable to exposure: 

𝑚𝑖,𝑎,𝑁𝑂𝑥 = 𝜌𝑖 ⋅
𝐶𝐹𝐴′𝑖
𝐶𝐹𝐴′𝐸𝑈

⋅ 𝑚𝑎,𝑁𝑂𝑥. 

Here 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 describes an adjustment of exposure in country 𝑖 compared to the EU (the value of 

𝑚𝑎,𝑁𝑂𝑥 in Table 2 is based on EU exposure and health costs). Data was available for 3106 counties, 

and the counties represent a wide range of combinations of NH3, NOx and SOx emissions (NH3 and 
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NOx between 10^3 and 6x10^7 kg) and population density between 0.015 and 3000 ppl/km2. The fit 

is described in Section 0. For NOx, the marginal human damage was most explained by NOx 

emissions in kg and average county temperature in degrees Kelvin: (𝛽′0 = −99.592, 𝛽
′
1
=

0.327, 𝛽′
2
= −0.188, 𝛽′

3
= −18.612) 

log(𝐶𝐹𝐴′) (𝑃𝑜𝑝𝐷𝑒𝑛, 𝑛𝑁𝑂𝑥, 𝐴𝑇𝑒𝑚𝑝)

= 𝛽′0 + 𝛽′1 ⋅ log(𝑃𝑜𝑝𝐷𝑒𝑛) + 𝛽′2 ⋅ log(𝑛𝑁𝑂𝑥) + 𝛽′3 ⋅ log(𝐴𝑇𝑒𝑚𝑝) 

For this fit: (1) the residuals were uniform across parameters and approximately normal, (2) the 

explanatory power was good (𝑟2  =  0.515), and (3) the ratio of comparative values was scale 

invariant. Details on scaling the uncertainty for the ratio 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 is discussed in Section 4.3.6. Scale 

invariance is lost under a quadratic fit, but a quadratic fit had more explanatory power: (𝑟2  =

 0.651) with the most significant terms being quadratic terms for ATemp and an interaction term 

between ATemp and NH3. Despite a lower value 𝑟2  =  0.515 for the fit of NOx compared to the fit 

of NH3, the unexplained variance, and so the error term used for uncertainty modelling had the 

same standard deviation (~0.52 for normal residuals under log transformation). 

The mean value for the ratio 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
, explicitly, under the given assumptions, is 

𝐶𝐹𝐴′𝑖
𝐶𝐹𝐴′𝐸𝑈

= (
1

27
∑ exp (𝛽′1 ⋅ (log(𝑃𝑜𝑝𝐷𝑒𝑛𝑘) − log(𝑃𝑜𝑝𝐷𝑒𝑛𝑖))

k∈EU27

+ 𝛽′2 ⋅ (log(𝑛𝑁𝑂𝑥,𝑘) − log(𝑛𝑁𝑂𝑥,𝑖)) + 𝛽′3 ⋅ (log(𝐴𝑇𝑒𝑚𝑝𝑘) − log(𝐴𝑇𝑒𝑚𝑝𝑖))))

−1

 

where 𝑃𝑜𝑝𝐷𝑒𝑛𝑖  is the population density of country 𝑖, 𝑛𝑁𝑂𝑥,𝑖 is the emission in kg of NOx of country 

𝑖,  𝐴𝑇𝑒𝑚𝑝𝑖  is the average temperature in Celsius of country 𝑖,  and the summation 𝑘 runs over the 

EU27 countries of 2008. 

Strong correlation (r=0.8578) was found between 𝑚𝑖,𝑎,𝑁𝐻3 and 𝑚𝑖,𝑎,𝑁𝑂𝑥 in the EAISUR estimates of 

marginal damage across US counties, arising from the chemistry of ammonium particulate 

formation, coinciding human population exposure sites for concentrations of emission and the same 

populations being exposed. Section 4.3.6 discusses joint sampling of 𝑚𝑖,𝑎,𝑁𝐻3 and 𝑚𝑖,𝑎,𝑁𝑂𝑥. 

In equation (3), 𝑐𝑖,𝑎,𝑁𝑂𝑥 is the adjustment to country 𝑖 of the EU estimated attributable damage to 

cereal crops 𝑐𝑎,𝑁𝑂𝑥  (Table 2) from ozone production due to a 1kg atmospheric emission of NOx. Let 

𝐶𝐹𝑃𝑖  denote the average farm-gate price of cereals per ton in country 𝑖 over 2015-2019 from 

FAOSTAT production data. FAOSTAT averages national quantities and local currency prices over 3 

years and converts to US$2014 PPP - US$2016 PPP. Let 𝐶𝐹𝑃𝐸𝑈 denote the average farm-gate price 

of cereals per ton in the EU27 countries of 2008 (the context of the costings in Table 2) over 2015-

2019 from FAOSTAT production data in US$2014 PPP - US$2016 PPP. Then 

𝑐𝑖,𝑎,𝑁𝑂𝑥 = 𝑐𝑎,𝑁𝑂𝑥 ⋅
𝐶𝐹𝑃𝑖
𝐶𝐹𝑃𝐸𝑈

. 

Uncertainty in farm-gate prices. and using the attribution factor implicit in 𝑐𝑎,𝑁𝑂𝑥, is discussed in 

Section 4.3.6. 
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Marginal damage cost Nr run-off to surface water 

A national level marginal damage cost (US$2020 PPP kg-1) from a kg of Nr run-off to surface water 

somewhere within country 𝑖 is 

𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟 = 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟 ⋅ 𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟 + 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑂3− ⋅ 𝑚𝑖,𝑔,𝑁𝑟 +  

(1 − 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟) ⋅ 𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟     (4) 

The weight factors 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟, 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑂3−  were determined from a global spatial dataset [106] of 

input to global major rivers, retention, and export to coastal zone from river mouth. 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟 is the 

proportion of Nr retained in the riverine system, 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑂3− is the proportion of Nr retained in the 

riverine system that is NO3-, and (1 − 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟) is the proportion of Nr exported to coastal 

systems. The proportions are an average across all freshwater cells in the data set within country 

boundaries and approximate the “fate” of Nr run-off in country 𝑖. 

Global spatial datasets are available that estimate Nr run-off with NO3- separated [107] [108] as 

concentration (mg/l) compared to total nitrogen (mg/l). [108] investigated linear relationships across 

major catchments, finding a slope between 0.5 and 0.75 in concentration of NO3- to total Nr (TN). 

We set   𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑂3− = 𝑢(0.5,0.75) ⋅ 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟 where 𝑢 denotes a uniform distribution sampled 

independently across countries – the data points were not available to examine residuals or 

Bayesian regression. The estimates from [70] do not distinguish marginal damages by concentrations 

to exposed populations, so the total load of NO3- serves as a proxy to concentrations outside the EU. 

There is a lack of compiled data outside developed countries on damages from deposition and run-

off. The human damages of nitrate in surface water 𝑚𝑖,𝑔,𝑁𝑟 was described in the section above 

(equation (1)). The country adjusted marginal costs of retained Nr run-off 𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟,  exported Nr 

run-off 𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟  are described below. Hydrological geospatial information, which allows 

calculation of concentrations of nitrate and retention at high spatial resolution, also includes 

attached data such as population levels and ecosystem information [109]. 

Models calculate riverine export of run-off Nr to coastal ecosystems [106], but there are no 

comprehensive sets of costings for coastal damages from eutrophication damages to separate 

riverine and coastal ecosystem service loss damages [110]. There are estimates of loss of value from 

coastal ecosystem services, for example from the Ecosystem Services Valuation Database (ESVD) 

[111] and meta-regressions based upon it [112], but still missing is the attribution of Nr run-off to a 

measure of “effective lost hectares” of those ecosystems and hence services. We lack a natural 

measure of the capital damaged in the Nr run-off case (humans and DALYs were used in the nitrate 

case) and the productivity of that capital in terms of consumption-based welfare to make measures 

of economic damage consistent (GDP/capita was used for DALYs in the nitrate). Without comparable 

measures of economic damage across economies it remains difficult to convert the value 𝑚𝑤,𝑁𝑟 of 

$US2020 10-25 / kg for the EU to an equivalent disutility in other countries. 

Our method scales damages by the different proportions of ecosystems vulnerable to Nr run-off in 

country 𝑖 compared to the EU, and the estimated costs of losing ecosystem services compared to the 

EU. 

In the absence of global data and a measure of “effective lost hectares”, we use the same principle 

of equivalent disutility as in the previous section to transfer damage costs and factor out “effective 
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lost hectares”. Therefore, we assume a measure ELhaES (effective lost ha of ecosystem services) of 

ha in a habitat 𝑘 at future time 𝑡 is given by 

𝐸𝐿ℎ𝑎𝐸𝑆𝑘(𝑖, 𝑡) = 𝛼𝑤 ⋅ 𝑎𝑖,𝑘 ⋅ 𝑛𝑖,𝑠𝑢𝑟𝑓,𝑁𝑟(𝑡) (5)  

where 𝛼𝑤 in units of ha kg-1 per habitat 𝑘 has been assumed constant (across all countries and 

habitats being considered) and 𝑎𝑖,𝑘 is a weight for country 𝑖 such that ∑ 𝑎𝑖,𝑘𝑘∈𝑟𝑒𝑡 = 𝛾𝑖,𝑟𝑒𝑡,𝑁𝑟 and  

∑ 𝑎𝑖,𝑘𝑘∈𝑒𝑥𝑝 = (1 − 𝛾𝑖,𝑟𝑒𝑡,𝑁𝑟) for inland and coastal habitats effected by retained or exported Nr, 

respectively. The weight factor provides that the total disutility from retained and exported Nr 

∑𝐸𝐿ℎ𝑎𝐸𝑆𝑘(𝑖, 𝑡) 

𝑘

= 𝛼𝑤 ⋅ 𝑛𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟(𝑡) 

is proportional across all countries and times to the quantity of retained or exported Nr. Thus, 

equation (5) is the constant proportional attribution of Nr to loss of ecosystem services equivalent to 

the same assumption about DALYs. As before, to transfer EU marginal damages 𝐸𝐿ℎ𝑎𝐸𝑆𝑘 and 𝛼𝑤 do 

not need to be calculated, but the assumption is evidently a gross simplification of the different 

vulnerabilities of ecosystems across inland or coastal habitats and the spatial distribution of the load 

of Nr run-off. Uncertainty in the loads to each ecosystem represented by 𝑎𝑖,𝑘 is discussed in the 

uncertainty section below. 

For Nr run-off retained we take 𝑎𝑖,𝑘, k=4,5, to be the proportional ha in country 𝑖 of 2 biomes as 

defined by the Ecosystem Services Valuation Database (ESVD): inland wetlands, as well as lakes and 

rivers. That is, if 𝑐𝑖,4 is the km2 surface area of inland wetland and 𝑐𝑖,5 is the km2 surface area of 

rivers and lakes, then 𝑎𝑖,𝑘′ = 𝑐𝑖,𝑘/∑ 𝑐𝑖,𝑘𝑘=4,5  and set 𝑎𝑖,𝑘 = 𝑎𝑖,𝑘
′ ⋅  𝛾𝑖,𝑟𝑒𝑡,𝑁𝑟. The weight factor 

provides a crude approximation to the proportion of loads of retained Nr received by the habitats. 

For Nr run-off exported we take 𝑎𝑖,𝑘, k=2,3, to be the proportional ha in the national and exclusive 

economic zone of country 𝑖 of 2 habitats as defined by the ESVD: coastal systems, and coral reefs. 

That is, if 𝑐𝑖,3 is the km2 surface area of coastal systems and 𝑐𝑖,2 is the km2 surface area of coral reefs, 

then 𝑎𝑖,𝑘′ = 𝑐𝑖,𝑘/∑ 𝑐𝑖,𝑘𝑘=2,3  and set 𝑎𝑖,𝑘 = (1 − 𝛾𝑖,𝑟𝑒𝑡,𝑁𝑟) ⋅ 𝑎𝑖,𝑘′. The weight factor provides the 

proportional distribution of exported Nr between the habitats. 

Table 3 lists the breakdown of ecosystem included in the ESVD. Annex A -  Land assigns values in 

$US2020 PPP of 𝐶𝐹𝑖,𝑘 to country 𝑖 per ha per yr to the ecosystem services per ha from the ESVD. 

Then, equating total damages from Nr retained in the denominator and numerator 

𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟(𝑡)𝛾𝑖,𝑟𝑒𝑡,𝑁𝑟𝑛𝑖,𝑠𝑢𝑟𝑓,𝑁𝑟(𝑡)

𝑚𝑤,𝑁𝑟 (𝑡) 𝛾𝐸𝑈,𝑟𝑒𝑡,𝑁𝑟 𝑛𝐸𝑈,𝑠𝑢𝑟𝑓,𝑁𝑟(𝑡)
=

∑ 𝐸𝐿ℎ𝑎𝐸𝑆𝑘(𝑖, 𝑡)𝐶𝐹𝑖,𝑘(𝑡)𝑘=4,5

∑ 𝐸𝐿ℎ𝑎𝐸𝑆𝑘(𝐸𝑈, 𝑡)𝐶𝐹𝐸𝑈,𝑘(𝑡)𝑘=4,5
 

⇒ 𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟(𝑡) = 𝑚𝑤,𝑁𝑟(0) ⋅  
∑ 𝑎𝑖,𝑘

′ 𝐶𝐹𝑖,𝑘(𝑡)𝑘=4,5

∑ 𝑎𝐸𝑈,𝑘
′ 𝐶𝐹𝐸𝑈,𝑘(0)𝑘=4,5

. 

Similarly 

𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟(𝑡) = 𝑚𝑤,𝑁𝑟(0) ⋅  
∑ 𝑎𝑖,𝑘

′ 𝐶𝐹𝑖,𝑘(𝑡)𝑘=2,3

∑ 𝑎𝐸𝑈,𝑘
′ 𝐶𝐹𝐸𝑈,𝑘(0)𝑘=2,3

. 

Here 𝑎𝐸𝑈,𝑘
′  and 𝐶𝐹𝐸𝑈,𝑘(0) are averaged across the EU27 states of the original study [70], and we 

assumed the EU values 𝑚𝑤,𝑁𝑟(𝑡) and 𝐶𝐹𝐸𝑈,𝑘(𝑡) appreciate at the same rate over time. 
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The proportions of habitats 𝑎𝑖,𝑘
′  were calculated from global spatial datasets classifying biomes. 

River, lakes and inland wetlands from the Global Lake and Wetlands Database (GLWD) Level 3 (Table 

3 of [113]) were mapped to the ESVD biomes (Table 3). The GLWD provides static information on 

maximum surface water extent in the habitats, is not dynamic, and similar datasets have some 

errors depending on satellite technique [114]. The spatial datasets are used for estimates of 

proportions only. 

Table 3: Matching Lake and Wetland categories in the Global Lakes and Wetlands Database (Level 3) (GLWD) dataset to the 
categories of ecosystems in the Ecosystem Services Valuation Database (ESVD). 

GLWD Level 3 ESVD 

Name GLWD-3 ID ESVD ID (𝒌) Name ESVD Sub-Id 

Lake 1 5 Lakes, Freshwater 5.2 

Reservoir 2 5 Human made water 
bodies 

5.4 

River 3 5 Rivers 5.1 

Freshwater 
marsh. Floodplain 

4 4 Swamps, marshes. 
Floodplains 

4.1 
4.8 

Swamp Forest, 
Flooded Forest 

5 4 Wetlands, Forested 4.6 
4.7 

Coastal Wetland 6 3 Coastal Systems 3 

Pan, 
Brackish/Saline 
Wetland 

7 5 Lakes, saltwater 5.3 

Bog, Fen, Mire 8 4 Peatland 4.2-4.5 

Intermittent 
Wetland 

9 4 Other (inland wetlands) 4.9 

Wetland 50%, 
25%, Complex 

10,11,12    

UNEP-WCMC Global Distribution 
of Coral Reefs 

   

Name Id    

Tropical Coral 
Reefs 

 2 Coral Reefs 2 

 

To calculate coral reef areas in km2 in proximity to agricultural activities of country 𝑖 we intersected 

the Exclusive Economic Zone (EEZ) zone3 with the UNEP-WCMC Global Distribution of Coral Reefs 

data set4 and calculated the area. 

Annex A - Land assigns values in $US2020 PPP of 𝐶𝐹𝑖,𝑘 per ha per year to the ecosystem services per 

ha per year from the ESVD. We use the uncertainty in 𝐶𝐹𝑖,𝑘 described in Annex A – Land. 

 
3 Flanders Marine Institute (2019). Maritime Boundaries Geodatabase, version 11. Available online at 
https://www.marineregions.org/. https://doi.org/10.14284/382  
4 UNEP-WCMC, WorldFish Centre, WRI, TNC (2021). Global distribution of warm-water coral reefs, compiled 
from multiple sources including the Millennium Coral Reef Mapping Project. Version 4.1. Includes 
contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001). Cambridge (UK): 
UN Environment World Conservation Monitoring Centre. Data DOI: https://doi.org/10.34892/t2wk-5t34  

https://doi.org/10.14284/382
https://doi.org/10.34892/t2wk-5t34
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We have no information on the onset and duration of the loss of ecosystem services and how future 

losses may increase compared to present damages due to future scarcity of ecosystem services 

and/or pathways of emissions, so we chose not to discount to a net present value. The 

eutrophication and acidification effects of nitrogen on ecosystems are relatively fast compared to 

other damages. Continued emissions in the future are attributable to sustaining the damage. This is 

a simplification, as the effect of present emissions (1) have some attribution to the increase in 

marginal damage in the future, and (2) have long term effects until socio-economic systems 

equilibrate around ecosystem changes that are irreversible. Therefore, the values used in equation 

(4) are 𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟 = 𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟(0) and 𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟 = 𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟(0). 

Appendix Section 4.8 discusses potential alternatives to factoring through “effective ha” of 

ecosystem loss to transfer marginal damages on Nr run-off. 

Marginal damage cost Nr deposition on land 

A national level marginal damage cost (US$2020 PPP kg-1) from a kg of Nr deposited on land 

somewhere within country 𝑖 is 

𝑚𝑖,𝑙,𝑁𝑟 = 𝛾𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑟 ⋅ 𝑚𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑟 + 𝛾𝑖,𝑙,𝑔,𝑁𝑟 ⋅ 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟 +  

(1 − 𝛾𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑟 − 𝛾𝑖,𝑙,𝑔,𝑁𝑟) ⋅ 𝑀𝑖,𝑠𝑢𝑟𝑓𝑤,𝑁𝑟     (6) 

The weight factors 𝛾𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑟, 𝛾𝑖,𝑙,𝑔,𝑁𝑟  are the proportions of the deposited Nr on land that is retained 

in the terrestrial system and leached to groundwater, respectively. The remaining Nr is assumed to 

be exported as surface water run-off. Deposition datasets [105] and run-off datasets [106] do not 

generally describe the interaction between deposition and run-off, i.e. what proportion of run-off 

has come from atmospheric deposition of emitted Nr. Studies show correlations between wet Nr 

deposition in high emission areas and riverine Nr concentrations; regression implying a >20% 

contribution of deposition to total riverine export from the study catchment [50, 51]. We have no 

information globally on leaching from deposition. We set 𝛾𝑖,𝑙,𝑔,𝑁𝑟 = 0 and  𝛾𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑂3− = 𝑢(0.8,1) 

where 𝑢 denotes a uniform distribution (sampled independently across countries), indicating 80-

100% of Nr deposition is retained and causes ecosystem losses in land systems. 

There is a lack of compiled data outside developed countries on damages from deposition. We use 

the previous method as for surface water, and scale damages by the different proportions of 

ecosystems vulnerable to Nr deposition in country 𝑖 compared to the EU, and the estimated costs of 

losing ecosystem services compared to the EU. Therefore, 

𝑚𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑟 = 𝑚𝑙,𝑁𝑟 ⋅  
∑ 𝑎𝑖,𝑘

′ 𝐶𝐹𝑖,𝑘(0)𝑘=6,7,8

∑ 𝑎𝐸𝑈,𝑘
′ 𝐶𝐹𝐸𝑈,𝑘(0)𝑘=6,7,8

. 

Here 𝑚𝑙,𝑁𝑟 is the EU damage cost from Table 6 and 𝑎𝐸𝑈,𝑘
′  and 𝐶𝐹𝐸𝑈,𝑘(0) are averaged across the 

EU27 states of the original study [70]. Damages are not discounted. 

For Nr deposition retained we take 𝑎𝑖,𝑘, k=6,7,8 to be the proportional ha in country 𝑖 of 4 biomes as 

defined by the ESVD: tropical forests, temperate forests, woodland & shrubland, and grass & range-

land. The area of woodland & shrubland and grass & range-land are combined in k=8 as their 

damage costs in ESVD are within 5% of each other and they have less studies in ESVD than other 

biomes. Biomes in ESVD outside of those mentioned have lower and or uncertain damages, and are 

generally more remote from agricultural concentrations of NH3 and food system emissions of NOx. If 
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𝑐𝑖,6 is the km2 surface area of tropical forests, 𝑐𝑖,7 is the km2 surface area of temperate forests and 

𝑐𝑖,8 is the km2 surface area of woodland etc., then 𝑎𝑖,𝑘′ = 𝑐𝑖,𝑘/∑ 𝑐𝑖,𝑘𝑘=6,7,8 . 

For land deposition we used the EcoRegions dataset [115] to calculate areas and aggregated them to 

ESVD categories using Table 4. 

Table 4: Matching Forest and Grassland categories in the Ecoregions WWF dataset to the categories of ecosystems in the 
Ecosystem Services Valuation Database (ESVD). 

EcoRegions  ESVD (6,7,8,9)   

Name BIOME-ID ESVD ID (𝒌) Name ESVD Sub-Id 

Tropical & 
Subtropical Moist 
Broadleaf Forests 

1 6 Tropical Rain 
Forest 

6.1 

Tropical & 
Subtropical Dry 
Broadleaf Forests 

2 6 Tropical Dry 
Forest 

6.2 

Tropical & 
Subtropical 
Coniferous 
Forests 

3 6 Other (tropical 
forests) 

6.4 

Temperate 
Broadleaf & 
Mixed Forests 

4 7 Temperate 
deciduous forest 
Other (temperate 
forest) 

7.2 
7.4 

Temperate 
Conifer Forests 

5 7 Other (temperate 
forest) 

7.4 

Boreal 
Forests/Taiga 

6 7 Boreal 
Forests/Taiga 

7.3 

Tropical & 
Subtropical 
Grasslands, 
Savannas & 
Shrublands 

7 8/9 Tropical wood 
and shrublands 
Tropical 
grasslands 
Savanna 

8.1 
9.1 
9.2 

Temperate 
Grasslands, 
Savannas & 
Shrublands 

8 8/9 Temperate wood 
and shrublands 
Temperate 
grasslands 
Savanna 

8.3 
9.1 
9.3 

Flooded 
Grasslands & 
Savannas 

9 (Used GWLD) Other (inland 
wetlands) 

4 

Montane 
Grasslands & 
Shrublands 

10 8 Other (woodland 
and shrubland) 

8.5 

Tundra 11 11 Tundra 11 

Mediterranean 
Forests, 
Woodlands & 
Scrub 

12 8 Mediterranean 
wood-& 
shrubland 

8.2 
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Deserts & Xeric 
Shrublands 

13 10 Desert 10 

Mangroves 14 (Used GWLD) Mangroves 3.4 

 

4.3.6 Uncertainty 
No uncertainty was available for the globally modelled proportions for deposition or run-off. We 

used uniform distributions on the uncertainty ranges given in Table 2, as described in the last 

section, for uncertainty in NO3- concentrations in retained Nr run-off and in the amount of land 

deposited Nr land washed into waterways before reacting with land ecosystems. 

Uncertainty in transfer of nitrate health losses 

We used uniform distributions on the uncertainty ranges given in Table 2 and uncertainty in future 

GDP projections (using random choice of Shared Socioeconomic Pathways (SSPs) as described in 

Section 2.5.6 of Annex A – Water) in 𝜌𝑖 for uncertainty in 𝑀𝐷𝐶𝑖,𝑔,𝑁𝑟 (equation (1)). No global data 

was available to examine variance in 𝛼. 10000 samples of 𝜌𝑖 for each country are correlated up to all 

countries being in the same future represented by a random choice of SSP, as described in Section 

2.5.6 of Annex A – Water. The value, 𝑚𝑔,𝑁𝑟 in Table 2 is sampled 10000 times independently for 

each country. This represents differences in concentrations and fate of leached nitrogen ending up 

in drinking water, but it underestimates uncertainty as it ignores the common biology of human 

reaction to nitrates. 

Uncertainty in transfer of ecosystem damages from deposition and run-off of Nr 

Uncertainty in the fate and load of Nr deposition and Nr run-off on ecosystems, means that we also 

replace the weight vectors 𝑎𝑖,𝑘
′  by their random variable counterparts. That is, terms such as 

∑ 𝑎𝑖,𝑘
′ 𝐶𝐹𝑖,𝑘(0)

𝑘=4,5

 

are replaced by 

∑ 𝐴𝑖,𝑘
′ ⋅ 𝐶𝐹𝑖,𝑘(0)

𝑘=4,5

 

where 𝐴𝑖,𝑘
′ = (𝐴𝑖,4

′ , 𝐴′𝑖,5) is a discrete random variable of the simplex of weights {𝑥 ∈ [0,1]2: 𝑥 =

(𝑎, 1 − 𝑎), 0 ≤ 𝑎 ≤ 1}. We take for A’ distribution the mapping to the simplex of the truncated 

exponential distribution on 𝑎 in the interval [0,1] with mean 𝑎𝑖,4
′ . The truncated exponential 

distribution is the maximal entropy distribution with given mean. The mean value of the sum with 

the random variable 𝐴′ is ∑ 𝑎𝑖,𝑘
′ 𝐶𝐹𝑖,𝑘(0)𝑘=4,5 .  When k=6,7,8 (three weights), the same principle 

applies by mapping to the simplex of weights {𝑥 ∈ [0,1]3: 𝑥 = (𝑎, 𝑏, 1 − 𝑎 − 𝑏), 0 ≤ 𝑎, 𝑏 ≤ 1, 𝑎 +

𝑏 ≤ 1} the truncated exponential distribution with mean (𝑎𝑖,6
′ , 𝑎𝑖,7

′ ) over the projection of the 

simplex onto two dimensions {(𝑎, 𝑏) ∈ [0,1]2: 𝑎 + 𝑏 ≤ 1}. 

This uncertainty has the interpretation as uncertainty in the load of the Nr run-off being 

proportionally more to one biome or the other in country 𝑖. We include this uncertainty as, for a 

national level cost without spatial resolution on the location of emission, we cannot be certain which 

ecosystem will be affected by deposition and run-off. The samples of 𝐴𝑖,𝑘
′  across countries are 

independent. 



Annex A 

 

33 

 

Uncertainty in transfer of ecosystem valuation 

We determined ecosystem values for countries in Annex A – Land using grouping by Human 

Development Index (HDI) to increase sample sizes of valuations across provisioning, regulating and 

cultural services. 

We used the updated December 2020 version of ESVD. There were 208 valuations from studies for 

k=2 coral reefs across 33 countries and the three classes of services, 914 valuations from studies for 

k=3 coastal systems across 51 countries and the three classes of services, 365 valuations for k=4 

inland wetlands across 38 countries, 169 valuations for k=5 lakes and rivers across 25 countries, 160 

valuations for k=6 tropical forests across 14 countries, 379 valuations for k=7 temperate forest and 

106 valuations for k=8 & 9 shrubland and grasslands across 8 countries. By considering total value 

using only a valuation from each of the provisioning, regulating and cultural classes the total may be 

underestimated. 

Since the distribution of estimates of 𝐶𝐹𝑘 involved the Anderson-Darling test of normality and a 

normal best fit to 𝑙𝑜𝑔(𝐶𝐹𝑘), 𝐶𝐹𝑘  will generally have a lognormal shape. The co-efficient of the form 
∑ 𝑎𝑖,𝑘

′ 𝐶𝐹𝑖,𝑘(0)𝑘=4,5

∑ 𝑎𝐸𝑈,𝑘
′ 𝐶𝐹𝐸𝑈,𝑘(0)𝑘=4,5

 will then, as a division of random variables will generally follow a lognormal 

shape. We drew 10000 samples as above for the coefficients 𝑎𝑖,𝑘
′  and the distributions of 𝐶𝐹𝑖,𝑘 from 

Annex A – Land to represent the co-efficient. The sampling is independent across countries, to 

represent that variation in the local characteristics of ecosystems outweighed potential under or 

overestimates of damage implicit in the chemistry of Nr reactions. For the same reason, 𝑚𝑤,𝑁𝑟 and 

𝑚𝑙,𝑁𝑟 is sampled 10000 samples from the uniform distribution between the values in Table 2 

independently for each country. Multiplying the random variables provides 10000 samples for 

𝑚𝑖,𝑙,𝑟𝑒𝑡,𝑁𝑟, 𝑚𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟 and 𝑚𝑖,𝑤,𝑒𝑥𝑝,𝑁𝑟 

Having 10000 samples also of 𝑀𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟, we can then generate 10000 samples of 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟 per 

equation (4) and 10000 samples of 𝑚𝑖,𝑙,𝑁𝑟. 

Uncertainty in transfer of crop losses from O3 

For uncertainty in crop losses, assumed to be loss of an in-country farm-gate price of unknown 

cereal crop distribution according to the proportion of production in country of cereal crops 

(FAOSTAT), we varied 𝐶𝐹𝑃𝑖  by the method described in Section 2.5.4 of Annex A – Water. This 

involved adding variation around the decadal mean of the FAO producer price index to 𝐶𝐹𝑃𝑖. The 

variation in Annex A – Water uses a joint sample across 182 countries – a different sample is used 

here to express a lack correlation between variation in losses for future water deprivation and 

variation in relatively immediate losses after NOx emission from tropospheric ozone. The value, 

𝑐𝑎,𝑁𝑂𝑥 in Table 2 was sampled 10000 times independently for each country, as it is unclear from the 

reference [70] whether the variance in the EU value is from factors that are common to impact 

pathways in other countries. This is likely an underestimate of the effects of price transmission from 

global commodity markets. 

Uncertainty in transfer of air pollution damage costs from NH3 and NOx emissions 

For uncertainty in air pollution human health costs for NH3 and NOx, we used the uncertainty in the 

statistical fit of variance of human health impact across US counties described in Section 4.6.3. The 

normal fit to the residuals in Figure 14 and Figure 15 are the basis of uncertainty in the ratios 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
  

for NH3 and 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 for NOx.  
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The calculation of the trend in the ratios across countries was transferred from a scale invariant 

formula involving US counties. We must argue for how the uncertainty of human health impact at 

the US county level should scale. We viewed the scaling assumption by dividing a country into US 

county size cells (approximately into 30 arcmin by 30 arcmin cells), assuming the US county level 

relationship with its uncertainty held in that cell using the national population density, and emissions 

equal to the national NH3, NOx and SOx emissions divided by the number of cells. 

The cells are therefore homogenous. Assuming a 1kg quantity of NH3 emissions occurs in one of 

these cells and is not being totalled across several cells for the purpose of determining the ratio, 

then the error random variable (assumed identically distributed by the normal distribution fitted to 

the residuals in Figure 14) represents error in 𝐶𝐹𝐴𝑖. The term 𝐶𝐹𝐴𝐸𝑈 represent the average across 

27 countries. At the US County scale, the correlation between log(CFA) and the residuals (the 

unexplained variance) is 0.58. This likely overestimates the cross-border distribution of NH3, NOx 

and SOx emissions and the level of similarity of geographic distribution of human populations, 

transport and agriculture at the country level compared to the US county level, but it also represents 

commonality in human biology from exposure and commonality in the underlying atmospheric 

chemistry. A multivariate normal distribution across all countries was constructed and sampled 

10000 times with the given correlation coefficient of 0.58. The joint error terms representing the 27 

EU countries were averaged and added to the model estimate of log(𝐶𝐹𝐴𝐸𝑈) for an estimate of the 

uncertainty in 𝐶𝐹𝐴𝐸𝑈. This random variable was divided against the error term for country 𝑖 added 

to the model estimate of log(𝐶𝐹𝐴𝑖). This provided a representation of the uncertainty in the ratio 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
. Examples of the distribution of the factor 

𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 for a range of countries are given in Figure 16 

to Figure 18. The same procedure was used for NOx and 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
, where the correlation between 

log(C A’) and residuals was 0.72. Examples of the distribution of the factor 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 for a range of 

countries are given in Figure 19 to Figure 21. 

Samples for 𝑚𝑖,𝑎,𝑁𝐻3 were obtained by multiplying the samples for 𝜌𝑖 (the same samples generated 

for groundwater since they represent the same future for discounting) with 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
. The value, 

𝑚𝑎,𝑁𝐻3 in Table 2 is sampled 10000 times independently for each country, as it is unclear from the 

reference [70] whether the variance in the EU value is from factors that are common to impact 

pathways in other countries (chemistry and human biology). The same procedure provided samples 

for 𝑚𝑖,𝑎,𝑁𝑂𝑥. Correlates in cross-county variance, representing common factors in impact pathways, 

were reintroduced by joint sampling described in Section 4.10.5. 

Pearson correlation (p=0.8578) was found between marginal damage costs from NH3 and NOx in the 

EAISUR estimates of across US counties, arising from the chemistry of ammonium particulate 

formation, coinciding human population exposure sites for concentrations of emission, and the same 

populations being exposed. Therefore, the individual distributions of 𝑚𝑖,𝑎,𝑁𝐻3  and 𝑚𝑖,𝑎,𝑁𝑂𝑥 for each 

country, were fitted to lognormal distributions (Figure 22 to Figure 27) and treated as marginals of a 

joint lognormal distribution and jointly sampled. The differences between the original samples for of 

𝑚𝑖,𝑎,𝑁𝐻3  and 𝑚𝑖,𝑎,𝑁𝑂𝑥 and the outcome of joint sampling is discussed in Section 4.10.5. 

Finally, the joint samples of air pollution, samples of crop losses as described above, were combined 

with the samples of 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟, 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟 and 𝑚𝑖,𝑙,𝑁𝑟 in equations (1) and (4) to obtain 10000 

samples of 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 and 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥. 
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See Figure 8 to Figure 10 for histograms of the sampling of 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟, 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟, 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 

and 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥. 

4.4 Fitting the damage costs of nitrogen emissions 
The components of the equations (1)-(4) were derived, with uncertainty, in the previous section. The 

mean value of costs of nitrogen emissions (NH3 to air, NOx to air, Nr to surface waters and Nr 

leaching to groundwater) in US$2020 PPP kg-1 emitted for 171 countries where data was available is 

listed in Table 6 in Section 4.10.1. All tables of results are in Section 4.10.1. 

4.4.1 Joint uncertainty and parametric fit 
Independent factors that result in variance in emissions, variance in distribution (atmospheric or 

aquatic) of nitrogen compounds, and variance in the ecosystem or human response are serial in the 

impact pathway in Figure 5. The sequential process of impact implies that uncertainty in the 

marginal damage cost per emission is the product of several random variables, which tends toward a 

log-normal distribution as the number of terms in the product increases. Even the product of three 

similarly supported and weakly correlated random variables demonstrates a distinct log-normal 

shape. 

Log-normal is the expected shape of uncertainty in impact from a small weight/quantity of emissions 

from the same source, undertaking the same distribution, and affecting the same ecosystem or 

human population. This shape was observed for marginal damages for NH3, NOx and Nr surface run-

off emissions. 

When aggregating total costs from quantities of emissions across sources, then consideration needs 

to be given about how much the marginal damage costs are correlated between sources. Correlation 

is not an indication of absolute size of the damage cost, so it does not matter so much that the 

impact pathways vary in terms of magnitude of the marginal damage cost. Correlation is a measure 

of when samples of one random variable are above the mean, how many samples and by how much 

would samples of the other random variable expected to be above the mean. If factors in damage 

costs are fully independent between sources, i.e. the variation in damage costs between sources is 

purely due to factor related to that source, then we would expect emissions from sources to be 

independent. 

Atmospheric and organic chemistry, and common biological processes, are shared across all nitrogen 

impact pathways. Human biological response on air pollution [116] and nitrate ingestion are shared 

to a greater degree than the greater diversity of biological responses across ecosystems in different 

locations. We correlated air damages between NOx and NH3 and across countries, interaction 

between NH3 and NOx have a known joint impact pathway through formation of ammonium nitrate 

[94]. We kept the degree of correlation in air pollution suggested by the comparison across US 

counties and through price transmissions suggested for crop losses. We did not correlate ecosystem 

services damages between land, surface water or direct run-off origins, nor across countries. 

Variation in the ecosystems impacted, the dependence on services, are assumed to outweigh the 

under or overestimation from acidification and eutrophication mechanisms being common. 

As discussed above, we assumed that NH3 and NOx emissions within countries occurred from 

‘county size’ sources. This may overstate the uncertainty in total damages when multiplied against 

larger quantities of emissions, as emissions spread amongst many sources with a degree of 

independent variance will tend towards a normal distribution with variance the inverse of the square 
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root of the number of sources. This, however, requires certain knowledge (specification) of the 

sources, and it requires modelling that has subnational resolution of emissions sources. The marginal 

damage costs were derived without assuming this knowledge of sub-national location of emission, 

and as much as possible without assuming knowledge of the quantity of emissions, except that is 

small enough that deviation in the marginal costs because of larger quantity changes is within the 

uncertainty estimate. This is a limitation in attempting to derive marginal damage costs with the 

assumption only that an emission occurred somewhere in a country, and no knowledge of the 

specific quantity of emissions. Uncertainty in total costings should be remodelled when there is 

greater certainty in source of emissions. 

We reject the proposition (see for example the CE Delft handbook on Environmental Prices) that 

marginal damages either from the same emission source, or from different nitrogen emission 

sources, can be safely treated as independent. A centrality argument was made in the CE Delft 

handbook that total costs from 10000s of kg of nitrogen emissions would be a very narrow band of 

uncertainty around the mean value because of the central limit theorem. The centrality argument 

seems unlikely to hold for nitrogen or carbon emissions. 

On the independence assumption for carbon cost, it is unclear why, consistently tonnes of CO2 

emissions from production in The Netherlands in 2020 get reabsorbed into the global economy in a 

future world where that carbon had say 2020US$ PPP 20 impact (below the mean of 2020US$ PPP 

51 see Annex A – GHG), and consistently tonnes of CO2 emission from production in Germany in 

2020 gets reabsorbed into the global economy in a future world where carbon had say 2020US$ PPP 

200 impact. The emissions from The Netherlands and Germany in the same year face the same 

atmospheric chemistry and the same causal mechanism for temperature increases in the same 

future world. If atmospheric science has underestimated the radiative potential of CO2, this is a 

feature of the physics and the chemistry in the impact pathway of every CO2 emission. The impact of 

the CO2 emissions between the different countries is much more likely drawn from the same lottery 

not different lotteries for the social cost of carbon. 

We would not expect marginal damages for nitrogen emissions to be as correlated as GHG emissions 

that have an impact pathway involving, essentially, long term residence in a global atmospheric pool, 

and global affect through temperature change – there are more local aspects and variance within 

the nitrogen pathways. However, we do not expect the influence of common systematic factors in 

the nitrogen pathways mentioned, including human biology and fundamental chemistry, to be 

swamped by local variance to such a degree that uncertainty in impact is removed by totalling of 

hundreds of emissions from the same source or different sources. 

Correlation in economic damages is very challenging to estimate. Long causal chains from emission 

to impact resist the ability to trace the fate of joint emissions. Similar complex chains, without 

mechanisms to trace them, can be seen in securitisation of mortgages with high joint chances of 

failure into separate Collateralised Debt Obligations (CDOs). The correlated failure rates of CDOs was 

only revealed post-hoc and initiated the financial crisis [117]. It is more conservative in the low 

frequency and observational process of revealed environmental change to assume correlations in 

impact pathways and place the burden of evidence on independence. 

The (joint) sampling data for 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟, 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟, 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 and 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥 are available 

in the full SPIQ dataset, providing a non-parametric form for risk assessment. 
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Parametric forms of distributions are easier to disseminate. A parametric form, using lognormal 

distributions given the mathematical rationale above, is informed by the mean and standard 

deviation from the sampling. Table 7 lists the lognormal fits. The damage costs of nitrogen are joint 

distributions across the quantities of emission and across countries. Table 7 therefore describes the 

marginals for individual countries. The correlation matrix from the sampling data can be used to 

generate the explicit formula and samples for multivariate lognormal distribution representing the 

joint distribution of marginal damage costs. The correlation matrix is available in the SPIQ dataset. 

4.4.2 Box: Aggregating damage costs across countries 
We emphasise that the joint distribution should be used when adding totals across countries. 

Studies of subsidy repurposing, dietary change, and food waste make changes to impact quantities 

such as water withdrawals and nitrogen emissions across countries, and when aggregating the 

effects the joint distribution should be used to assess risk. Correlations can increase the probability 

of extreme costs, and so sampling independently from marginals can underestimate, in some cases 

to a large degree, the economic risk of food system impacts. 

4.4.3 Results 
The mean value of costs of US$2020 PPP  kg-1 of NH3 emission to air, NOx to air, Nr to groundwater 

and Nr to surface water for 171 countries where data was available is listed in Table 6 in Section 

4.10. Table 8 indicates the potential contribution of NH3 emission to air, NOx emission to air, Nr 

surface water run-off and Nr leached to deep groundwater to nitrogen pollution damages using 

2015 quantities of emissions from EDGAR5.0 and IMAGE-GNM modelling. At a global level (Figure 

12), confirmed in other studies of air pollution, agricultural NH3 emissions represent up to 4 times 

greater damages than agricultural NOx emissions, mainly from the greater quantity of emissions. 

Surface run-off has similar damages to NH3 air emissions (though the quantities include a potential 

double-counting factor between run-off from deposition and direct run-off), with a greater spread of 

uncertainty.  

4.4.4 Box: “Hidden cost” of agricultural nitrogen emissions 
Table 8 includes a ‘total damage cost’ by multiplying the national marginal costs by quantities of 

agricultural emission of NH3 to air, NOx to air, Nr to surface waters, and Nr to groundwater for 2015 

obtained from EDGAR5.0 (NH3 and NOx - https://edgar.jrc.ec.europa.eu/dataset_ghg50) and Nr run-

off and leaching from agricultural obtained from the IMAGE-Global Nutrient Model (GNM) spatial 

dataset In [102]). Comparison to GVA is unreliable for small countries and countries subject to large 

transboundary effects (Table 10), but generally confirm findings of the EU Nitrogen Assessment that 

cost of nitrogen pollution may be comparable to the GVA of agriculture in many countries. The totals 

(Table 8 and Figure 11 to Figure 13) are presumptive figures and should be used carefully in terms of 

comparison to national or the global economy given lack of consideration of social costs and second 

order effects for large changes in emissions. They are damage estimates from present agricultural Nr 

pollution without accounting for the value provided to society from the use of nitrogen in 

agriculture. There is no comparison with a counterfactual, so it does not provide any indication of 

the economic value of food system transformation, i.e. the balance of value between decreasing 

nitrogen emissions and damage costs and what it costs to abate nitrogen emission with overall social 

welfare the same as present value. Reducing nitrogen pollution to very low levels will not ‘save the 

costs’ to the global economy of the amounts in Figure 11. Damage costs must be paired with 

abatement costs and counterfactuals to determine economic potential in reducing nitrogen 

emissions. 

https://edgar.jrc.ec.europa.eu/dataset_ghg50


Annex A 

 

38 

 

Countries facing the largest “hidden” nitrogen costs are shown in Figure 13 in Section 4.10.1. 

It is less valuable to compare the marginal costs across countries, they represent primarily the 

externalised costs of nitrogen emission for market corrections in the economies where the costs are 

borne. They are therefore more usefully compared against economic indicators of the same country. 

Table 9 provides the amounts for Figure 13 and compares nitrogen damage costs against Gross 

Value Added (GVA) of agriculture for that country. 

We caution on using the marginal damage costs for individual countries where large transboundary 

effects are suspected, meaning that the weights 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑟, 𝛾𝑖,𝑤,𝑟𝑒𝑡,𝑁𝑂3−, 𝛾𝑖,𝑙,𝑁𝑂𝑥, 𝛾𝑖,𝑙,𝑁𝐻3 , 𝛾𝑖,𝑙,𝑁𝑂𝑥, 

𝛾𝑖,𝑤,𝑁𝑂𝑥 and 𝛾𝑖,𝑤,𝑁𝐻3 indicating the fate of nitrogen through atmospheric deposition and retained 

(and hence exported) Nr in surface waters are poor estimates when most of the deposited or surface 

water load is due to the much larger emissions of neighbours. 46 countries in Table 10, all at lower 

HDI and lower production than respective high emission neighbours such as China, the EU, Russia, 

India, and Nigeria, have higher marginal costs for atmospheric emissions of NH3 and NOx that are 

likely distorted by transboundary deposition. Many low-income countries are also at the boundary 

of effective interpolation of air pollution costs, as they may have low population density and 

disproportionate or variable total NOx and SOx emissions compared to NH3 emissions. As these 

countries have low data for transboundary correction and few estimates for nitrogen damages, we 

have otherwise kept them in the dataset with a deposition correction (Table 10). Future 

improvements of the dataset will utilise reduced complexity geospatial modelling of nitrogen fate to 

remove distortion of using aggregation over national areas in the weights. 

The marginal costs in Table 6 vary greatly, even across similar countries, due to the many factors 

represented in equations (1)-(4). Overall, the attribution of human and ecosystem damage from the 

nitrogen cascade of NH3 or NOx emitted to air from agricultural activities, or reactive nitrogen 

leached to groundwater or entering surface waters as run-off, come from a limited set of studies. 

The values in Table 6 and their uncertainty Table 7 were determined using basic relationships and 

broad assumptions for transport of figures from the EU nitrogen assessment to other countries. 

Transfer to other countries involves approximation of modification terms to exposure and 

ecosystem damages, with a large amount of uncertainty. 

Large variation is due to primary factors (such as population density) and the nitrogen cascade, 

where the “fate” of emitted nitrogen varies greatly between countries. Spatial datasets based on 

modelling show large variation, for example, between nitrogen retained in inland water systems and 

export to coastal systems. Large uncertainties remain on the run-off from deposition, exposure to 

nitrate in surface drinking water, and differences in concentrations between surface water and 

ground water. 

Table 9 lists 19 countries where the estimated total costs to ecosystem from surface water run-off 

outweigh by several times the costs to human health from air pollution. The largest variance 

between countries is in the estimate of the marginal damage cost of Nr surface run-off. This is due to 

order of magnitude uncertainty in the estimation of the value of coastal ecosystems. Where a 

country has a high proportion of riverine export of Nr to coastal systems, the valuations in the ESVD 

database (see Annex A – Land) for many countries has much higher values for coral reefs and coastal 

systems than retention in inland wetlands than the EU. Those estimates also have the greater 

uncertainty, introducing distinctly longer tails for Nr surface run-off than the estimates of NH3 and 

NOx air emissions. 
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4.5 Social costs to society 
Costing should separate between exercises to estimate damage and mitigation costs and costing 

optimal economic action. The latter may use damage and mitigation costs to determine the optimal 

level of Nr emissions that maximise social surplus. 

Cost-benefit exercises for Nr emissions reduction, or increase, compare damage and mitigation 

costs. A cost-effectiveness exercise examines if the mitigation costs are the least costs to reduce or 

increase Nr emissions by a set amount. An optimal social cost links the two, determining the amount 

of Nr reduction where the social surplus, that is, the difference between the damage cost reduction 

for reducing Nr emissions and the least cost mitigation to achieve the reduction, is maximised. 

If current Nr emissions are above the socially optimal level, then, according to economic theory, 

paying the marginal societal damage costs of present emissions are too expensive. This does not 

imply, at the societal level, that the full damage costs should be paid, as the social surplus is less 

than the damage costs. The benefits of N application at the societal level allow some Nr emissions to 

be desirable and there is presently no other technology that achieves completely the same benefits 

for less costs without N application.  

If current Nr emissions are below the socially optimal level, then, according to economic theory, the 

marginal societal damage costs of present emissions should be paid because they are exceeded by 

the marginal benefits of N application. 

A cluster of Sub-Sahara African (SSA) countries apply less than 25kg/ha of N input through fertiliser, 

with cereal yields less than 2 t / ha (FAOSTAT, Hannah Ritchie and Max Roser (2013) - "Fertilizers". 

Published online at OurWorldInData.org. 'https://ourworldindata.org/fertilizers'). Analysis of maize 

shows that yield is N limited [118, 119] (though the determination of benefits from increased N 

application is complicated by other factors, see below), and optimal rates in terms of maximising 

private profits to farmers is between 60-100 kg/ha. Damage costs imply that the socially optimal 

rates will be less than this (50-80kg /ha, assuming a 20% reduction on the private optimal application 

rate in line with the Chinese study [82], which is closer in terms of development and smallholder 

farmers to the cluster of SSA countries than the 30% estimated for Europe [70]). Current N fertiliser 

application in SSA is therefore likely less than half the socially optimal level. Depending on nitrogen 

use efficiency, this roughly translates to the fact that Nr emissions are presently below the socially 

optimal level for a range of low-income countries.  
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Figure 6: Source: Our World in Data. Hannah Ritchie and Max Roser (2013) - "Fertilizers". Published online at 
OurWorldInData.org. 'https://ourworldindata.org/fertilizers'. Average yield across the total cereal category in FAOSTAT 
compared to estimated use of nitrogen fertilizer in kg per ha. Fertilizers used within and across countries vary in their chemical 
properties, N formulation, total N-weight and conversion to N emissions. 

A simple determination of socially optimal rates hides complications in the calculation of benefits for 

increased N application. Increasing crop yield may be limited by water availability and, increasingly, 

may be phosphorous (P) limited [120-122], reinforcing that optimal targets for food system 

emissions, across quantities such as GHG emissions, water consumption, Nr and P emissions, need 

joint consideration. 

Some studies place the marginal profit of crop gains for a unit of Nr emission as a subtraction from 

the marginal damage cost of that Nr emission, and some studies consider the marginal loss of crop 

gains for a unit of Nr emission reduction as a marginal cost of abatement [70, 82]. However, the cost 

of yield reduction may not be among the least costs for N reduction.  Best practice for determining 

the social cost of Nr emissions is to include the marginal crop loss from reduction of Nr emissions in 

a marginal abatement curve. 

The incompleteness of abatement curves for nitrogen mitigation (or nitrogen supplementation in 

countries where marginal social benefits of increasing agricultural yield still outweigh the marginal 

damages of Nr emissions) make determining the optimal marginal social cost of nitrogen difficult in 

practice. For example, globally inefficient use of N means that up to 50% of Nr emissions reduction 

could come, not from the cost of lost yields, but for the costs of increased N efficiency [123, 124]. 

Uncertainty in social costs will come from the uncertainty presented here in damage costs and 

uncertainty in abatement. The uncertainty in different views and knowledge of abatement persists 

even if marginal societal damages cost of Nr emissions are represented with certainty at a spatial 

and contextual level. 

4.5.1 The cost to whom? 
The difference between damage costs and optimal social costs reinforces the need to consider the 

cost to whom. The damage costs to exposed populations vulnerable to respiratory disease and 

nitrate intake, and to polluted ecosystems, are always negative amounts. However, the “damage” to 
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society overall is the economic distance between the present social surplus and the maximal social 

surplus. 

The marginal damage costs of NH3, NOx and Nr to water are taken as damage to GDP (aggregate 

economic effects) and a proxy for social welfare and costs to society. This provides consistency when 

aggregating nitrogen marginal damages costs with costs from other quantities associated to impacts 

(GHG, dietary intake, etc.). The marginal damages are not intended to describe costs transacted 

between sectors nor full costs for actors. Full costs for actors should be adjusted to account for 

counterfactuals. In the case of cost to society, the counterfactual is the optimal social arrangement. 

Consumption as a proxy for welfare is comparable across national economies through purchase 

price parity (PPP). The unit of marginal costing is 2020USD per kg, understood for PPP comparisons 

as 2020 international dollars [125] (using PPP ratios from 2017 

https://www.worldbank.org/en/programs/icp#5).  

In the case of many African nations, an increase in Nr application (and thereby Nr emissions) 

maximises outcomes to society. A negative social cost of nitrogen in SSA, in this case, sponsors the 

argument for increasing fertiliser use in SSA, especially if high nitrogen use efficiency is maintained 

through the increase in input. Fertiliser use is mostly constrained in SSA by high cost/kg of fertiliser 

and low income, and a negative social cost should translate into subsidisation. 

In determining the optimal marginal social cost, the benefits to society may not make their way to 

those experiencing damages, which introduces distributional issues and inequity in cost bearing. 

In the present series of food system costs, for consistency with other costings the focus is on the 

cost to society. It is uncorrected for potential losses to society from distributional effects.  

4.6 Temporal aspects of nitrogen impact 
Most of the exposure from nitrogen pollution for impacts on ecosystem and human health are 

within a short time frame – days for atmospheric transport of particulate matter and weeks to 

months for short term biotic effects in ecosystems (but not the effects of sustained pollution on 

ecosystems) [2, 8]. There is a delay in the emergence of nitrate into drinking water supply from 

leaching. Human health effects for exposure to particulate matter and nitrate have been assumed to 

manifest at 10 years from exposure, and discounted. More detailed modelling of groundwater flux, 

and the human disease pathways from exposure, could improve the temporal modelling of future 

impacts from present emission. 

Modelling nitrogen impact of emissions at a future date requires future projections relevant to 

population distributions and density, spatial context of agricultural land-use, the future context of 

ecosystem services (increased or decreased use and value of services) and background total nitrogen 

and sulphur emissions [126]. Environmental and ecosystem modelling would also need to determine 

the potential for saturation of Nr pools and additional stress on systems (the effect of sustained 

pollution) that results in costs above just inflation. Socio-economic modelling might also need to 

consider any change in vulnerability of populations to health impacts, above increases in population 

exposure through proximity to particulate loading. 

4.7 Corrections and quantification of correlates 
Corrections and correlations are required for aggregating the total damage costs of the food system. 

Many studies assume a first order linear approximation with constant marginal constants, and do 

https://www.worldbank.org/en/programs/icp#5
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not correct for the joint effects and joint uncertainty across the marginal costs [127]. More costs that 

are summed in this way (adding more impacts such as the cost of anti-biotic resistance, pollinator 

losses, etc.) under the assumption that they are biophysically and economically independent, 

introduces more error to the sum as an approximation of mean total costs if correlations are 

present. Protection from large errors is not guaranteed if marginal costs have individually been 

modelled by sophisticated Computable General Equilibrium (CGE) models and IAM; the covariation 

between the models may be absent. 

Similar considerations are required for marginal abatement costs due to the mutual abatement 

potential of measures. 

To remove double counting of costs, nutrient water pollution has been excluded from the damage 

costing of blue water withdrawal in Annex A – Water. N2O emissions are costed under Annex A – 

GHG and not costed under nitrogen. Soil erosion is not currently included as an impact category as 

there is some double counting adjustment needed between nutrient displacement to waterways 

and sediment run-off. 

Marginal damage costs for phosphorous emissions are not estimated in the current dataset. The 

impact pathway for phosphorous is mainly soluble phosphorous and through soil displacement. 

When both N and P are enhanced, the impact of N can be larger through increased biotic growth 

(both positive and negative impacts, including increased carbon sequestration and increased 

biodiversity loss) [128, 129]. 

4.7.1 Correlation between nitrogen marginal damage costs 
The joint distribution of marginal damage costs for NH3 and NOx emissions to air, and Nr run-off and 

leaching across 171 countries (sampled or parametric) described in Section 4.3.5 considered double 

counting and correlation within marginal damage costs. Section 4.4.1 discussed the complexity of 

correlations between the marginal damage costs for nitrogen emissions. NH3 and NOx emissions to 

air share similar component of the impact pathway and interact through the formation of 

ammonium nitrate. The relationship is non-linear, excess NOx can inhibit conversion rates to 

ammonium. Agricultural emissions may also only be weakly interacting – burning of biomass and 

application of fertiliser is likely separated in time, and the bulk of NOx emission from food system 

energy use is likely separated in space from agricultural locations. This has been represented by 

moderate correlation in air pollution observed in the attribution study of US counties. 

Correlations between air and groundwater and surface water impact pathways may be present in 

emission factors used to determine quantity of emissions – certain soils and climate conditions may 

induce greater volatilisation rates at the same time as greater concentrates in groundwater and 

rivers. For correlation in marginal costs of nitrogen emissions, ecosystems downstream stressed by 

nitrogen pollution may be superlinearly (double the dose of Nr induces more than double the 

impacts) effected by deposition, but this requires more detailed modelling and assessment of the 

variation in ecosystem responses and the interaction of species of nitrogen retained from surface 

run-off and deposited from NH3 and NOx air emissions. Vegetation changes in ecosystems can 

change NH3 exchange between soils and atmosphere, and there is bi-directional representation of 

these physical exchanges in some Chemical Transport Models (CTMs) [1]. 

An advantage of examining and framing nitrogen damages parametrically using normal distributions 

on log axes is that Pearson correlation matrices log-transformed can be used to reconstruct joint 

distributions. The correlation matrix determined from joint Monte-Carlo sampling of discounting and 
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the damage components in Section 4.3 is used for correlation between the marginal damage costs of 

nitrogen and available in the SPIQ dataset. 

4.7.2 Quantification of correlations with non-nitrogen costs 
Methodology for the correlation of marginal damage costs for nitrogen with the marginal damage 

costs of other quantities of impact, and sensitivity analysis, is described in Annex B. We discuss the 

interactions of the impacts of Nr emissions with the other impact categories and estimate block 

cross-quantity correlation coefficients (Table 5) for Table 3 in Annex B. For the sensitivity analysis 

described in Annex B, weak, moderate, and strong interactions between marginal costs are 

described by set correlation coefficients indicating proportion of covariance (Pearson): 

 

Correlation P  

Strong negative -0.8  

Moderate negative -0.5  

Weak negative -0.2  

None 0  

Weak positive 0.2  

Moderate positive 0.5  

Strong positive 0.8  

 

To use block correlation between country level costs, we make broad assumptions factoring in 

biophysical interactions between atmospheric and aquatic pathways, and the joint response of 

human populations and ecosystems exposed to either increased doses or mutual effects. Low 

correlation does not indicate independence and no interactions, it may indicate negative 

correlations of from some biophysical effects, e.g. changes in the CO2 and CH4 flux between 

atmosphere and land due to NH3 deposition, but positive correlations in other components, e.g. air 

pollution and temperature increased cardiovascular stress, and an estimate of the overall balance 

between the effects. 

Interactions at the level of marginal damages, that is, in the impact pathway given a joint change in a 

unit of GHG emissions and joint change in kg of nitrogen emission, are described in the correlation 

coefficients here. A later version of the dataset will consider correlates with the individual nitrogen 

marginal damages. Interactions between quantity change (the number of units) and joint 

distributions on vectors of quantities must be factored into modelling of quantities, not marginal 

damages. 

Table 5: Block Pearson correlation coefficients between uncertain marginal damage costs 

Costs of… 

GHG 

emissions 

Water 

withdraw

al and 

deprivatio

n 

Land use 

and 

change 

Nr 

Emissions Poverty 

Chronic & 

Hidden 

Hunger NCDs 
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Nitrogen 

pollution 

0 +0.2 +0.5  0 -0.2 0 

 

Symmetry of the correlation matrix means that the interaction of marginal impacts from blue water 

withdrawal and land-use conversion and effective loss of ha of ecosystem services has been 

assessed in Annex A – Water and Annex A – Land. Briefly, nitrogen pollution of waterways and 

deposition can worsen the effect of water deprivation due to a unit of water withdrawal, through 

effective denial of water use from quality reduction and coupled stress from biodiversity loss and 

acidification with water scarcity. Nitrogen induced acidification damages in the nitrogen cascade are 

widely distributed across biomes by air to land deposition and surface water run-off, including 

export of Nr to coastal systems and coral reefs. Acidification and eutrophication of terrestrial and 

aquatic biomes generally result in damage to biodiversity and ecosystem structure and hence service 

provision per ha [130]. There are mitigation effects such as increased carbon sequestration (and 

hence more valuable services) from increased biotic growth, but this effect is predominantly 

counted in the GHG and nitrogen interaction to avoid double counting. Overall, greater than 

expected damages from a ha of lost ecosystem services are expected to coincide with greater than 

expected damages from nitrogen pollution. 

4.7.3 Marginal damage costs of GHG emissions and nitrogen emissions 
The interaction between GHG marginal damages and nitrogen marginal damages overall is informed 

by covariance in damages from the highly complex interactions between global carbon and methane 

cycle with the global nitrogen cycle. 

Nr emissions effect climate impacts through changes in temperature (a reduction in radiative 

forcing) and co-incident (increased) stress on humans and ecosystems. Higher temperature and 

changes in precipitation, associated to higher climate damages can induce co-incident (increased) 

stress on humans and ecosystems, and produce conditions in the future for increased secondary Nr 

emissions. 

Influence on emissions and exposure 

High temperature and precipitation enhance N mineralization rates, hence enhance the N 

availability but also the potential for emissions. [25] estimates a 5 °C increase in global 

temperature would increase NH3 volatilisation from anthropogenic sources (assuming those 

sources stay constant) by 42%. The increase would apply to primary emissions and secondary 

emissions from deposition – primary NH3 emissions are the quantity for marginal damages, but 

a proportional increase in secondary emissions from a component in the impact pathway would 

increase the marginal damages. The additional NH3 emissions to atmosphere (volatilization) from 

the same deposition of Nr occurs in warmer and drier conditions. There would also be a coincident 

increase in transport distance of PM2.5 produced by NH3 and NOx in warmer and drier conditions, 

with a potentially greater exposure to human populations and deposition on a greater area of 

ecosystems [25]. Variations in humidity and temperature effect the relationship between 

atmospheric NH3 (from fertiliser application or untreated animal manure) and increase formation of 
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PM2.5 [131-133]. O3 production from the same amount of emitted NOx increases with increasing 

temperature [134]. 

The timeframe, however, of atmospheric reactions and Nr deposition from present NH3 and NOx 

emissions is weeks. The temperature effects of present GHG emissions, even CH4, are in the scale of 

decades. Timeseries of GHG and Nr atmospheric emissions would have lag terms of interactions, but 

for the present study the consideration is on the interaction of the impact pathways for coincident 

units of quantity change. Therefore, the positive lag correlation in marginal damages as very small 

for concurrent emissions. 

Precipitation increases run-off of Nr to waterways, which increases the quantity of Nr surface run-off 

emissions. Wetter soil increases the volatilisation of ammonia, increasing the quantity of NH3 

emitted to air [135], though soil chemistry is the more dominant effect [136]. Precipitation changes 

the concentration and distribution of loads from a kg of Nr surface run-off (increasing the quantity of 

decreased run-off was discussed above) [137]. Higher streamflow increases export to higher value 

ecosystem services in coastal systems [138], which would increase marginal damages from Nr 

emissions. Temperature increases stratification in the water, and hence increases eutrophication 

damages [138]. It is unclear without spatially explicit modelling of precipitation changes, which have 

higher uncertainty than temperature projections, the trade-off between drier conditions with 

increased NH3 volatilisation and decreased Nr run-off and the converse in wetter conditions. 

Precipitation changes from climatic change also have lag. 

Aerosol and sequestration effects 

Nr emissions have warming and cooling effects that influence climate impacts, summarised in [139] 

and [36] (Figure 7). 

The formation of particulate matter from NH3 and NOx emissions has aerosol effects. The reduction 

of the radiative forcing from NH3 is estimated between -0.1 Wm-2 and -0.2 Wm-2  from modelling [1] 

[1, 140]. Site measurements confirm contribution of ammonium nitrate to aerosol formation near 

agricultural sources of NH3 and that NH3 has the largest aerosol effect on radiative forcing per kg of 

emission [1]. NH3 and NOx are estimated to be responsible for ~25% of aerosol radiative forcing 

reduction [1]. The timescale of impact is different, continual Nr emissions are reducing the impacts 

of resident CO2 emissions (the albedo radiative forcing effect is short term). 

NOx emissions to atmosphere produce tropospheric O3. O3 has a positive radiative forcing and 

impairs C sequestration by damaging plant growth [36]. However, tropospheric O3 decreases CH4 

concentration, their interaction producing the hydroxyl radical which is responsible for 88% of the 

atmospheric CH4 sink (Figure 7). 
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Figure 7: Quantification in Global Temperature Potential (GTP) from [36] of the complex interactions on radiative forcing 
between Nr emissions and GHG emissions. Particulate matter associated to NH3 and NOx air pollution has an aerosol effect 
(NH3, NOx -> aerosol), reducing radiative forcing and countering warming potential while present in the atmosphere. 
Deposition of nitrogen increases sequestration and acidification, resulting in net increased drawdown of CO2 and CH4 from 
the atmosphere (N deposition -> CO2 & CH4 flux). NOx pollution produces tropospheric O3, which has a warming potential 
itself and damages vegetation and hence sequestration (NOx -> O3 -> CO2 uptake). However, O3 has a larger cooling effect 
by increasing the hydroxyl radical and the breakdown of CH4 in the atmosphere (NOx -> CH4 & O3). 

Deposition on land, surface run-off of Nr, and deposition on the open ocean, has increased CO2 

sequestration from increased biological growth. This reduces the impact of GHG emissions as Nr 

emissions increase. Models have estimated an increase of ~3% in biological growth in the open 

ocean and an increase in overall ocean carbon sequestration of ~0.4% due to anthropogenic N 

deposition [28, 65]. 

Carbon (C) sequestration increases from Nr deposition on temperate and tropical forest soils [141] 

(an estimated 25 kg C sequestration per kg N deposited [29]). Though high Nr deposition can reduce 

the sequestration amount per kg due to damage from acidification [142]. Sequestration through 

biomass growth in forests is the clearest effect. Increased soil storage from N deposition in 

grasslands [143] is less certain through the influence of human activity [144, 145]. 

It is unclear the contribution of water vapor from excess Nr biological growth and the fate of 

sequestered carbon when ecosystems tip from Nr saturation to collapse (dead zones, etc).  
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Co-incident stress and vulnerability of humans and ecosystems 

IAM damage modelling includes effects of heat stress on human cardio-vascular disease [146], which 

is also the primary pathway for air-pollution damages [77]. The effects of present air pollution 

couple more closely to extreme temperature events induced potentially by short-term warming 

from present CH4 emissions and from past CO2 emissions. 

IAM damage modelling includes costs of changes in terrestrial ecosystem services. Riverine nitrogen 

from agricultural run-off and deposition degrades ecosystem services. The effects of excess nutrients 

from present Nr emission couple more closely to temperature change from present CH4 emissions. 

Positive correlations are expected in the magnitude of degradation, climatic impact will reinforce 

with non-GHG agricultural sources of stress [147]. 

Multiple climate drivers interact with eutrophication with positive and negative effects. Current 

modelling predicts small enhancement in eutrophication primarily from temperature increase of 

water and decrease solubility of oxygen (O) [148]. This is expected to vary considerably depending 

on local coastal (sea level rise) conditions, precipitation and loadings [148]. 

Nr deposits to marine and coastal environments increases CO2 sequestration and accelerates 

acidification. Estimates are that only a few percent of additional acidification and increase 

sequestration is due to the interaction between Nr deposition and C [58]. This increases is related to 

the exposure of ecosystem services in costal zones to acidification [58]. It is unclear whether 

increased acidification has the counter effect of reducing natural N2O emissions from the ocean 

[149, 150] or not [151, 152]. CO2 sequestration is the major source of acidification in the open ocean 

[28]. 

PM2.5 and O3 attributable mortality associated with increased temperature over the 21st century 

are expected to decline if NH3 and NOx emissions were reduced [153]. Factors of human 

vulnerability to climate change and air-pollution coincide [154, 155]. 

C and N global cycles share common drivers in impact pathways which also induces correlation [36].  

There is a decrease in O3 damage to plants as CO2 concentration increases [156]: a concurrent 

effect. Over a longer timeframe, more O3 is produced from NOx emissions as temperature increases. 

Coupled C and N cycle models to jointly represent the above effects are presently missing or limited 

[36]. Overall, coupled C and N emission modelling lacks the sophistication to consider a joint time 

series of emissions, where N emissions in 2020 interact jointly with the effects of 2020 GHG 

emissions. Given the complexity of positive and negative effects, the inability to consider 

quantitatively temporal differences in impact from emissions, and the lower climate forcing 

reduction effects of NH3 which are the primary agricultural atmospheric emission, we use a 

correlation coefficient of zero. The negative effect on radiative forcing is countered by positive co-

impact on human populations and ecosystems. 

4.7.4 Marginal damage costs of noncommunicable disease from dietary intake and nitrogen 

emissions 
The primary factor for per kg NH3 air pollution damages is PM2.5 production. PM2.5 exposure is 

associated to cardiovascular risk [157]. Most Global Burden of Disease (GBD) risks from dietary 

consumption per unit of intake increase CVD and are increased by existing CVD conditions [158]. 

Health co-morbidity effects of air pollution and dietary intake (CVD is the predominate pathway for 

DALYs lost from dietary intake [159]) can simultaneously increase the years of life lost, but could 
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produce double counting across cost estimates as premature death of the same vulnerable 

individuals may be counted twice.  

Nitrate can have positive effects for CVDs but negative effects for cancers, with small increased risks 

jointly associated to diets high in meat and low in fibre [56]. Nitrate’s highest concentrations of 

intake at the population level occur from vegetable and fruit consumption [56]. Overall, the mixed 

effects on coincident health effects from consumption, the uncertainty in nitrate’s impact, and the 

low marginal impacts compared to marginal damage from air pollution, NO3- contributes little to 

correlated marginal damages between consumption and Nr emissions. 

There are tertiary positive effects between CVDs, poverty alleviation, and hence nitrogen inputs 

[160], though most studies are from high income countries where nitrogen use and poverty 

alleviation are decoupled [161]. 

These interactions are expected to be weak, and they may be downgraded further by spatial and 

temporal coincidence of impacts. Cardiovascular effects of air pollution may escalate existing 

conditions, whereas human health aspects of dietary intake now may take a decade or more to 

manifest. Weak positive links between nitrogen damage to cultural and recreation ecosystem 

services values and health coeffects are also. 

4.7.5 Poverty gap and marginal damages of nitrogen emissions 
Section 4.10.6 demonstrates a strong trend between increase in Nr emissions and increase in GVA 

from agriculture. When the quantity of Nr emissions increases GVA increases. For low-income 

countries with large share of Gross National Income (GNI) associated to agriculture this indicates a 

potential for reduction in the poverty gap [162]. Historically, increased use of nitrogen is positively 

correlated with reduction of poverty gaps, and headcounts of poverty [163]. For more advanced 

economies, nitrogen use and poverty decouple. Distributional issues might also lower the effects of 

increased nitrogen use and poverty alleviation. It is not as clear whether and to what degree an 

increase in external economic damages per kg of nitrogen emitted is associated to a decrease in the 

poverty gap, except through the assumed tertiary relationship that increased quantity of Nr 

emissions increases damages per unit of emissions (the marginal damage functions for nitrogen are 

convex in Nr emissions). Interpolating the relationship in Section 4.10.6, there is some uncertainty 

whether the marginal benefit to GVA from Nr surface run-off is convex. That it is potentially linear or 

concave even for low-income countries could be due to poor nitrogen use efficiency and the quality 

of fertiliser used [163, 164]. Nitrogen use-efficiency reduces the quantity of emissions from 

reduction of the poverty gap. 

It is not clear that higher than expected marginal damages from unit of nitrogen emissions (which 

are related mostly to the biophysical fate of nitrogen and the vulnerability of ecosystems and 

exposed human populations) equates to a lower than expected poverty gap. Poverty alleviation is 

associated historically to over-utilised and hence scarcer ecosystems provisioning services, which 

provide potentially greater value per ha [165]. Increased poverty can be associated to higher air 

pollution costs through greater proximity to precursors NOx and SOx of particulate formation (dirtier 

combustion, industrial neighbourhoods, power plants, etc.) [166, 167] and vulnerability [168]. The 

evidence is more limited on crowding in urban populations from poverty and for widely dispersed 

particulates like ammonium compounds [169]. The effects on marginal ecosystem value and costs 

from human health impacts are globally variable and potentially opposing. 
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Overall, though poverty and nitrogen use are clearly not independent [162], the correlation between 

the marginal damages of nitrogen emissions and poverty gaps are not clearly positive nor negative. 

4.7.6 Marginal damages from chronic and hidden hunger and nitrogen emissions 
Marginal damages from chronic and hidden hunger factor through the number of DALYs per person 

in malnutrition. Coincident health effects of water pollution, water quality and excess nitrate intake, 

can increase potential co-morbidity with protein-energy malnutrition [170-172]. There are opposing 

effects: increased DALYs per person in malnutrition is moderately correlated with absolute numbers 

of ppl in malnutrition itself (Annex A – Water) and weakly correlated with poverty, and hence 

negatively weakly correlated with the total quantity of nitrogen pollution. The role of nutrient 

deficiencies in exacerbating the human response to air pollution is speculated but has few studies 

[173]. Other potential moderating factors to the interaction of the impact pathways of 

undernourishment and nitrogen emissions are temporal and spatial coincidence of health impacts. 

Nitrate contamination of groundwater has a temporal lag of transport from topsoil to groundwater 

(present leaching will influence the cost of future changes in malnutrition impact more than present 

change sin malnutrition impact). 

Overall, though malnutrition and nitrogen use are clearly not independent [162, 174], we assign a 

weak negative correlation. We assess, generally, countries with high levels of malnutrition, receive 

mitigation in the health effects per person with malnutrition from the input of a nitrogen and 

increased nitrogen coincides with increased marginal damages. 

4.8 Consideration for use 

4.8.1 Agricultural subsidy reform 
As in Annex A – GHG, since subsidies are largely social welfare policies, economic arguments for 

subsidy reform should be framed as costs to society. 

Global subsidy reform will involve potentially large changes in spatial distribution of agricultural 

production and volumes of commodities. Price effects change non-food consumption and/or 

demand change for agricultural commodities, with a secondary correction to production distribution 

and volumes. Competition for land-use and spatial changes in production have effects on labour and 

inputs. General equilibrium modelling of changes to the economy, resulting in quantities associated 

to impacts, are appropriate, as are comparisons with consumption/GDP outputs from the models 

with costs to society estimates of corrections of market failure. 

The modelling of global subsidy change should take into account increased income and poverty 

reduction in lower income countries (i.e. the benefits of nitrogen use), to offset the potential 

damages from increased nitrogen use. A further factor, modelling should consider, is an explicit 

nitrogen use efficiency component in projections of technological improvements. 

Because of their different chemical cascades through atmospheric, terrestrial, and aquatic 

environments, NH3, NOx and riverine Nr should be costed as joint marginals. It would be useful to 

improve widespread availability and use in costings of nitrogen emissions factors. Attribution using 

formulas from N application or livestock production to NH3, N3O and riverine Nr emission such as 

those available in  A ’s  ivestoc   nvironmental Assessment and Performance (FAO LEAP) are not 

widely implemented in models or nitrogen accounting.  

Implicit in exogenous scenarios are emission trajectories. If setting exogenous scenarios, there 

should be some consideration whether the marginal social costs need adjustment for Nr future 



Annex A 

 

50 

 

pooling and saturation effects in ecosystems, or more exposed and more vulnerable human 

populations downwind and downstream of N emissions. 
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4.10 Appendix 

4.10.1 Tables of results 
Caveats from the main text: attribution of human and ecosystem damage from the nitrogen cascade 

of NH3 or NOx emitted to air from agricultural activities, or reactive nitrogen leached to 

groundwater or entering surface waters as run-off, come from a limited set of studies. Most 

marginal estimates are based on calculations for the EU nitrogen assessment. Transfer to other 

countries involves approximation of modification terms to exposure and ecosystem damages, with a 

large amount of uncertainty. 

Large variation is due to primary factors (such as population density) and the nitrogen cascade, 

where the “fate” of emitted nitrogen varies greatly between countries. Spatial datasets based on 

modelling show large variation, for example, between nitrogen retained in inland water systems and 

export to coastal systems. Large uncertainties remain on the run-off from deposition, exposure to 

nitrate in surface drinking water, and differences in concentrations between surface water and 

ground water. 

The largest variance between countries is in the estimate of the marginal damage cost of Nr surface 

run-off. This is due to order of magnitude uncertainty in the estimation of the value of coastal 

ecosystems. Where a country has a high proportion of riverine export of Nr to coastal systems, the 

valuations in the ESVD database (see Annex A – Land) for many countries has much higher values for 

coral reefs and coastal systems than retention in inland wetlands than the EU. Those estimates also 

have the greater uncertainty, introducing distinctly longer tails for Nr surface run-off than the 

estimates of NH3 and NOx air emissions. 

The values in Table 6 and their uncertainty Table 7 were determined using basic relationships and 

broad assumptions for transport of figures from the EU nitrogen assessment to other countries. 

Transboundary effects of run-off and deposition for smaller countries within proximity to large 

nitrogen emitters may be large. Detailed spatial modelling of the fate of nitrogen, and the 

connection to surrounding socio-economic systems is recommended to improve the estimates and 

reduce uncertainty, though, even with this modelling, attribution between services lost and the load 

of nitrogen to human and natural systems is still a challenge. 

Some mean values for health damages from NH3 and NOx are lower than other studies based on 

value of a statistical life – part of this arises from lower population density compared to the EU and 

the requirement to obtain an average marginal damage cost to be used at a country level. Despite 

having lower mean values, the uncertainty represented in Table 7 spans an order of magnitude. It is 

not recommended to use the mean values in Table 6 separate from the uncertainty estimates in 

Table 7 .
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Table 6: Valuation of 171 countries based on country level adjustment to economic costs from human and natural capital 
impacts, the fate of emitted nitrogen, and exposure. Measured in US$2020 purchasing power parity (international dollars) 
per kg (N-weight). It is not recommended to use the mean values in this table separate from the uncertainty estimates in 
Error! Reference source not found.. The column of values (bold) provide the mean of the log-normal distributed value in U
S$2020 PPP, per kg of Nr leached to groundwater for 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟, per kg of Nr run-off to surface water for 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟, 

per kg of NH3 emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3, and per kg of NOx emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥. Estimates for low emission 

countries in proximity to large emitting neighbours may be unreliable due to transboundary effects (Table 10). 

Country 
ISO3166

-1 
UN 
M49 

HDI 

MDC Nr 
leached 
US$2020 

PPP per kg 

MDC Nr 
run-off 

US$2020 
PPP per kg 

MDC NH3 
air 

US$2020 
PPP per kg 

MDC NOx 
air 

US$2020 
PPP per kg 

Afghanistan AFG 4 0.511 0.15 1.56 5.35 10.02 

Angola AGO 24 0.581 0.43 7.13 5.16 10.23 

Albania ALB 8 0.795 0.78 1.27 7.67 15.92 

United Arab 
Emirates ARE 784 0.89 3.84 53.18 14.21 32.17 

Argentina ARG 32 0.845 0.78 5.34 3.51 9.57 

Armenia ARM 51 0.776 0.79 3.35 8.33 17.17 

Australia AUS 36 0.944 3.86 25.32 5.5 15.06 

Austria AUT 40 0.922 3.87 1.2 24.88 46.7 

Azerbaijan AZE 31 0.756 0.79 1.14 8.09 16.39 

Burundi BDI 108 0.433 0.15 0.38 3.93 8.46 

Belgium BEL 56 0.931 3.8 22.93 25.27 53.68 

Benin BEN 204 0.545 0.46 7.34 8.93 15.37 

Burkina Faso BFA 854 0.452 0.15 6 1.37 6.16 

Bangladesh BGD 50 0.632 0.42 84.17 14.88 25.45 

Bulgaria BGR 100 0.816 0.79 4.02 7.48 14.63 

Bahamas, The BHS 44 0.814 3.84 96.67 28.29 37.43 

Bosnia and 
Herzegovina BIH 70 0.78 0.78 1.76 21.26 28.04 

Belarus BLR 112 0.823 0.79 4.17 2.91 10.57 

Belize BLZ 84 0.716 0.42 130.15 31.64 36.22 

Bolivia BOL 68 0.718 0.42 17.28 9.72 15.79 

Brazil BRA 76 0.765 0.78 115.49 17.54 23.66 

Brunei 
Darussalam BRN 96 0.838 3.81 150.47 37.02 53.63 

Bhutan BTN 64 0.654 0.42 5.76 13.04 19.11 

Botswana BWA 72 0.735 0.78 37.2 8.37 13.97 

Central African 
Republic CAF 140 0.397 0.15 0.87 14.68 18.87 

Canada CAN 124 0.929 3.82 6.39 9.46 19.64 

Switzerland CHE 756 0.955 3.85 1.31 27.88 53.06 

Chile CHL 152 0.851 3.87 8.23 8.12 23.14 

China CHN 156 0.761 0.79 97.89 6.68 14.42 

Cote d'Ivoire CIV 384 0.538 0.46 7.65 16.59 24.37 

Cameroon CMR 120 0.563 0.42 7.25 9.66 15.58 
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Congo, Dem. 
Rep. COD 180 0.48 0.15 6.81 8.16 13.23 

Congo, Rep. COG 178 0.574 0.46 7.2 2.99 9.03 

Colombia COL 170 0.767 0.79 120.34 21.67 30.72 

Comoros COM 174 0.554 0.46 5.59 26.5 23.79 

Cabo Verde CPV 132 0.665 0.47 0.41 9.1 12.34 

Costa Rica CRI 188 0.81 0.78 117.19 8.38 19.04 

Cuba CUB 192 0.783 0.79 100.2 9.59 18.28 

Cyprus CYP 196 0.887 3.84 0.67 45.99 57.53 

Czech Republic CZE 203 0.9 3.81 2.53 21.26 43.01 

Germany DEU 276 0.947 3.8 21.87 15.32 39.92 

Djibouti DJI 262 0.524 0.47 7.16 5.02 9.43 

Denmark DNK 208 0.94 3.8 21.5 22.25 48.02 

Dominican 
Republic DOM 214 0.756 0.79 115.76 8.87 19.88 

Algeria DZA 12 0.748 0.42 50.03 6.55 11.63 

Ecuador ECU 218 0.759 0.79 111.21 17.24 25.93 

Egypt, Arab 
Rep. EGY 818 0.707 0.42 48.04 3.6 9.93 

Eritrea ERI 232 0.459 0.15 7.07 9.36 13.57 

Spain ESP 724 0.904 3.85 21.48 9.88 30.02 

Estonia EST 233 0.892 3.84 21.26 29.23 46.9 

Ethiopia ETH 231 0.485 0.16 2.15 6.68 11.36 

Finland FIN 246 0.938 3.8 4.74 16.27 31.05 

Fiji FJI 242 0.743 0.79 134.74 8.19 16.66 

France FRA 250 0.901 3.83 17.91 11.79 34 

Gabon GAB 266 0.703 0.78 112.87 17.75 23.68 

United 
Kingdom GBR 826 0.932 3.86 20.17 15.08 40.84 

Georgia GEO 268 0.812 0.79 0.65 14.82 22.51 

Ghana GHA 288 0.611 0.42 7.45 13.68 20.29 

Guinea GIN 324 0.477 0.15 6.57 8.9 15.88 

Gambia, The GMB 270 0.496 0.15 7.22 3.95 8.58 

Guinea-Bissau GNB 624 0.48 0.15 6.71 2.25 8.63 

Equatorial 
Guinea GNQ 226 0.592 0.79 7.51 24.18 28.37 

Greece GRC 300 0.888 3.81 42.43 16.1 35.34 

Guatemala GTM 320 0.663 0.78 119.08 9 17.46 

Guyana GUY 328 0.682 0.79 87.27 17.93 26.28 

Honduras HND 340 0.634 0.46 97.11 19.5 25.35 

Croatia HRV 191 0.851 3.84 1.02 25.07 44.8 

Haiti HTI 332 0.51 0.46 7.09 6.22 13.7 

Hungary HUN 348 0.854 3.83 1.86 19.01 40.6 

Indonesia IDN 360 0.718 0.42 107.19 6.53 14.19 

India IND 356 0.645 0.42 88.43 6.59 14.48 

Ireland IRL 372 0.955 3.84 21.14 18.28 39.55 
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Iran, Islamic 
Rep. IRN 364 0.783 0.71 85.15 4.33 10.52 

Iraq IRQ 368 0.674 0.78 65.66 4.5 11.77 

Iceland ISL 352 0.949 3.84 36.01 29.02 38.85 

Israel ISR 376 0.919 3.89 16.48 29.29 53.09 

Italy ITA 380 0.892 3.83 21.81 13.22 37.77 

Jamaica JAM 388 0.734 0.78 122.44 10.99 17.45 

Jordan JOR 400 0.729 0.79 67.82 9.87 16.29 

Japan JPN 392 0.919 3.83 33.03 13.25 40.35 

Kazakhstan KAZ 398 0.825 0.79 7.18 4.35 10.07 

Kenya KEN 404 0.601 0.47 7.26 6.65 12.76 

Kyrgyz 
Republic KGZ 417 0.697 0.42 0.5 8.57 13.84 

Cambodia KHM 116 0.594 0.46 6.92 11.28 19.97 

Korea, Rep. KOR 410 0.916 3.83 41.97 17.77 46.23 

Kuwait KWT 414 0.806 3.84 40.26 30.26 45.7 

Lao PDR LAO 418 0.613 0.42 0.44 17.91 25.41 

Lebanon LBN 422 0.744 0.79 0.3 12.6 20.57 

Liberia LBR 430 0.48 0.15 7.19 14.18 21.09 

Libya LBY 434 0.724 0.79 72.89 7.33 12.68 

Sri Lanka LKA 144 0.782 0.42 91.64 6.88 15.77 

Lesotho LSO 426 0.527 0.46 0.85 8.63 13.83 

Lithuania LTU 440 0.882 3.79 43.45 18.11 38.2 

Luxembourg LUX 442 0.916 3.83 0.16 43.15 64.34 

Latvia LVA 428 0.866 3.78 2.22 16.26 35.07 

Morocco MAR 504 0.686 0.42 72.41 5.43 11.21 

Moldova MDA 498 0.75 0.8 105.42 28.76 36.95 

Madagascar MDG 450 0.528 0.15 6.72 8.76 15.56 

Mexico MEX 484 0.779 0.79 83.31 6.32 13.15 

North 
Macedonia MKD 807 0.774 0.79 5.9 22.21 28.28 

Mali MLI 466 0.434 0.15 6.47 1.29 6.48 

Myanmar MMR 104 0.583 0.42 7.03 10.95 19.62 

Montenegro MNE 499 0.829 0.79 5.72 9.95 15.44 

Mongolia MNG 496 0.737 0.42 18.38 10.26 15.06 

Mozambique MOZ 508 0.456 0.15 6.9 6.38 10.67 

Mauritania MRT 478 0.546 0.42 9.04 2.01 8.84 

Malawi MWI 454 0.483 0.15 1.05 3.76 8.01 

Malaysia MYS 458 0.81 0.79 113.78 6.21 16.43 

Namibia NAM 516 0.646 0.79 54.63 8.69 14.75 

New Caledonia NCL 540 0.813 3.81 1.1 20.9 29.29 

Niger NER 562 0.394 0.15 7.64 4.5 9.55 

Nigeria NGA 566 0.539 0.42 7.21 4.76 12.06 

Nicaragua NIC 558 0.66 0.43 84.74 14.8 21.61 

Netherlands NLD 528 0.944 3.84 20.55 26.48 57.57 

Norway NOR 578 0.957 3.84 34.39 10.51 25.1 
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Nepal NPL 524 0.602 0.47 0.48 12.91 21.21 

New Zealand NZL 554 0.931 3.83 27 9.08 25.66 

Oman OMN 512 0.813 3.85 75.35 17.23 30.74 

Pakistan PAK 586 0.557 0.46 7.37 3.37 10.88 

Panama PAN 591 0.815 0.79 117.76 15.26 23.99 

Peru PER 604 0.777 0.79 110.44 21.1 29.76 

Philippines PHL 608 0.718 0.43 114.82 6.86 15.34 

Papua New 
Guinea PNG 598 0.555 0.43 7.03 10.49 15.45 

Poland POL 616 0.88 3.84 4.16 15.65 36.68 

Puerto Rico PRI 630 0.845 3.82 1.79 88.01 97.4 

Korea, Dem. 
People's Rep. PRK 408 0.733 0.15 109.05 14.76 20.32 

Portugal PRT 620 0.864 3.83 40.6 18.46 39.82 

Paraguay PRY 600 0.728 0.79 8.1 6.28 13.4 

West Bank and 
Gaza PSE 275 0.708 0.42 0.17 15.72 18.79 

Qatar QAT 634 0.848 3.85 54.61 26.38 47.58 

Romania ROU 642 0.828 0.79 42.99 8.79 16.65 

Russian 
Federation RUS 643 0.824 0.78 102.03 15.61 21.18 

Rwanda RWA 646 0.543 0.15 1.3 6.76 11.25 

Saudi Arabia SAU 682 0.854 3.83 46.88 4.9 16.51 

Sudan SDN 729 0.51 0.15 8.16 2.87 7.29 

Senegal SEN 686 0.512 0.47 8.14 7 14.4 

Solomon 
Islands SLB 90 0.567 0.46 6.04 8.1 13.72 

Sierra Leone SLE 694 0.452 0.15 7 16.25 22.95 

El Salvador SLV 222 0.673 0.42 62.32 7.11 12.76 

Somalia SOM 706 0.285 0.15 7.91 5.54 9.65 

Serbia SRB 688 0.806 0.79 2.79 11.24 18.85 

South Sudan SSD 728 0.433 0.15 2.03 4.71 8.7 

Suriname SUR 740 0.738 0.8 88.25 21.29 29.28 

Slovak 
Republic SVK 703 0.86 3.81 1.79 23.83 44.15 

Slovenia SVN 705 0.917 3.86 0.62 30.71 49.63 

Sweden SWE 752 0.945 3.87 2.92 19.47 35.33 

Eswatini SWZ 748 0.611 0.42 0.69 5.24 9.88 

Syrian Arab 
Republic SYR 760 0.567 0.15 2.87 2.07 6.29 

Chad TCD 148 0.398 0.15 6.51 4.89 9.77 

Togo TGO 768 0.515 0.15 1.14 14.28 18.89 

Thailand THA 764 0.777 0.78 95.38 11.09 21.46 

Tajikistan TJK 762 0.668 0.42 0.93 6.59 12.89 

Turkmenistan TKM 795 0.715 0.79 21 4.57 11.56 

Timor-Leste TLS 626 0.606 0.42 7.39 8.68 13.41 

Trinidad and 
Tobago TTO 780 0.796 3.81 148.42 38.02 61.05 
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Tunisia TUN 788 0.74 0.47 83.14 5.36 11.31 

Turkey TUR 792 0.82 0.78 107.26 8.74 16.71 

Tanzania TZA 834 0.529 0.46 7.01 6.62 13.29 

Uganda UGA 800 0.544 0.15 2.81 9.03 13.68 

Ukraine UKR 804 0.779 0.43 86.18 7.33 12.9 

Uruguay URY 858 0.817 3.84 1.65 13.46 30.75 

United States USA 840 0.926 3.78 28.85 4.88 17.72 

Uzbekistan UZB 860 0.72 0.42 14.17 3.66 10.09 

St. Vincent 
and the 
Grenadines VCT 670 0.738 0.78 125.33 37.54 28.2 

Venezuela, RB VEN 862 0.711 0.42 80.49 13.76 19.59 

Vietnam VNM 704 0.704 0.43 107.51 8.29 17.27 

Vanuatu VUT 548 0.609 0.46 5.9 8.29 11.16 

Yemen, Rep. YEM 887 0.47 0.15 7.68 1.4 5.73 

South Africa ZAF 710 0.709 0.8 90.02 3.47 9.82 

Zambia ZMB 894 0.584 0.42 1.06 7.16 12.22 

Zimbabwe ZWE 716 0.571 0.46 2.81 3.81 9.21 

 

Table 7: Shape of uncertainty in the valuation of 171 countries based on country level adjustment to economic costs from 
human and natural capital impacts, the fate of emitted nitrogen, and exposure. Measured in US$2020 purchasing power 
parity (international dollars) per kg (N-weight). The parameters mu and sigma refer to the lognormal fit of marginal damage 
costs (MDC) as an uncertain value: log(MDC)~N(mu,sigma), for Nr leached to groundwater for 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟, Nr run-off to 

surface water for 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟 , NH3 emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3, and NOx emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥. 

Country 
ISO 
3166-
1 

MDC 
Nr 

leach
ed 

MDC 
Nr 

run-
off 

MDC 
NH3 
air 

MDC 
NOx 
air 

MDC 
Nr 

leach
ed 

MDC 
Nr 

run-
off 

MDC 
NH3 
air 

MDC 
NOx 
air 

mu sigma 

Afghanistan AFG -2.184 -0.92 1.223 2.165 1.006 1.517 0.879 0.461 

Angola AGO -1.157 0.885 1.161 2.179 1 1.379 0.847 0.445 

Albania ALB -0.554 -1.175 1.769 2.701 0.998 1.509 0.731 0.359 

United Arab 
Emirates ARE 1.043 2.815 2.397 3.389 0.988 1.295 0.714 0.401 

Argentina ARG -0.566 0.491 0.889 2.179 1.027 1.332 0.763 0.357 

Armenia ARM -0.545 -0.231 1.867 2.776 0.997 1.5 0.706 0.359 

Australia AUS 1.052 2.262 1.409 2.637 0.992 1.201 0.706 0.361 

Austria AUT 1.055 -0.524 3.027 3.77 0.978 1.087 0.61 0.381 

Azerbaijan AZE -0.549 -1.11 1.826 2.718 0.986 1.362 0.69 0.367 

Burundi BDI -2.192 -2.398 1.109 2.1 0.991 1.561 0.719 0.264 

Belgium BEL 1.023 1.539 2.972 3.898 1.017 1.874 0.714 0.411 

Benin BEN -1.087 0.757 1.62 2.522 1.021 1.476 0.904 0.515 

Burkina Faso BFA -2.202 0.408 -0.029 1.776 1.021 1.538 0.759 0.268 

Bangladesh BGD -1.19 2.226 2.04 2.99 1.007 1.997 0.938 0.534 

Bulgaria BGR -0.553 0.413 1.808 2.625 1.007 1.295 0.64 0.334 

Bahamas, The BHS 1.04 3.106 3.094 3.54 0.997 1.499 0.705 0.401 
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Bosnia and 
Herzegovina BIH -0.552 -0.884 2.734 3.156 0.996 1.518 0.764 0.543 

Belarus BLR -0.55 0.188 0.816 2.307 1.013 1.325 0.709 0.317 

Belize BLZ -1.175 2.789 2.526 2.951 1.019 2.017 1.132 0.858 

Bolivia BOL -1.174 0.44 1.396 2.425 0.997 1.646 1.062 0.585 

Brazil BRA -0.556 2.65 1.803 2.644 1.016 1.881 1.214 0.752 

Brunei 
Darussalam BRN 1.03 2.877 3.352 3.904 0.989 2.002 0.715 0.393 

Bhutan BTN -1.158 -0.465 2.22 2.792 0.974 1.698 0.769 0.489 

Botswana BWA -0.564 1.678 1.518 2.401 1.019 1.593 0.911 0.53 

Central African 
Republic CAF -2.185 -1.508 1.302 2.265 1.012 1.517 1.426 0.853 

Canada CAN 1.029 0.865 1.892 2.87 1.007 1.172 0.797 0.433 

Switzerland CHE 1.043 -0.796 3.064 3.885 0.99 1.175 0.727 0.413 

Chile CHL 1.047 1.018 1.88 3.074 1.008 1.241 0.648 0.365 

China CHN -0.532 2.76 1.29 2.5 0.98 1.729 0.904 0.45 

Cote d'Ivoire CIV -1.09 0.904 1.971 2.818 1.027 1.406 1.056 0.648 

Cameroon CMR -1.174 0.779 1.714 2.519 0.991 1.456 0.894 0.54 

Congo, Dem. 
Rep. COD -2.188 0.716 1.395 2.32 1 1.503 1.045 0.585 

Congo, Rep. COG -1.097 0.754 0.757 2.14 1.032 1.479 0.75 0.318 

Colombia COL -0.556 2.99 2.218 3.021 1.015 1.801 1.085 0.676 

Comoros COM -1.079 0.362 3.014 3.109 0.997 1.661 0.726 0.342 

Cabo Verde CPV -1.08 -1.213 1.946 2.457 1.007 1.01 0.724 0.331 

Costa Rica CRI -0.546 2.859 1.831 2.881 0.977 1.774 0.728 0.335 

Cuba CUB -0.544 2.939 1.884 2.784 1 1.635 0.761 0.41 

Cyprus CYP 1.037 -1.154 3.576 3.966 1.004 1.125 0.709 0.411 

Czech Republic CZE 1.028 0.263 2.865 3.689 1 1.059 0.615 0.379 

Germany DEU 1.018 1.798 2.543 3.616 1.024 1.605 0.606 0.373 

Djibouti DJI -1.076 1.101 1.357 2.197 1.009 1.226 0.711 0.302 

Denmark DNK 1.031 1.802 2.907 3.796 0.99 1.598 0.62 0.387 

Dominican 
Republic DOM -0.542 3.111 1.891 2.918 0.975 1.645 0.719 0.347 

Algeria DZA -1.157 2.343 1.245 2.231 0.982 1.597 0.934 0.516 

Ecuador ECU -0.541 2.771 2.114 2.923 0.995 1.846 0.979 0.613 

Egypt, Arab 
Rep. EGY -1.163 2.461 0.888 2.212 0.993 1.493 0.762 0.348 

Eritrea ERI -2.189 1.084 1.517 2.269 1.011 1.281 0.974 0.613 

Spain ESP 1.04 2.041 2.076 3.329 1.01 1.409 0.649 0.377 

Estonia EST 1.038 1.827 3.201 3.773 1.001 1.554 0.593 0.385 

Ethiopia ETH -2.162 -0.653 1.065 2.141 0.988 1.537 1.078 0.577 

Finland FIN 1.028 0.755 2.598 3.36 0.996 1.169 0.615 0.385 

Fiji FJI -0.545 2.908 1.844 2.767 1.001 1.93 0.718 0.301 

France FRA 1.04 1.867 2.274 3.457 0.989 1.428 0.619 0.37 

Gabon GAB -0.557 2.264 1.889 2.633 1.006 1.988 1.034 0.683 

United 
Kingdom GBR 1.042 1.843 2.503 3.631 1.009 1.523 0.644 0.392 
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Georgia GEO -0.544 -1.603 2.424 2.996 0.987 1.344 0.717 0.457 

Ghana GHA -1.165 0.965 1.854 2.664 0.999 1.369 0.993 0.614 

Guinea GIN -2.209 0.675 1.406 2.508 1.042 1.488 1.037 0.545 

Gambia, The GMB -2.2 0.614 1.12 2.118 1.011 1.568 0.705 0.252 

Guinea-Bissau GNB -2.171 0.638 0.576 2.128 1.002 1.548 0.672 0.234 

Equatorial 
Guinea GNQ -0.544 0.798 2.763 3.097 1.005 1.473 0.827 0.579 

Greece GRC 1.031 2.67 2.549 3.49 0.989 1.549 0.673 0.384 

Guatemala GTM -0.557 2.234 1.825 2.732 1.01 1.977 0.748 0.415 

Guyana GUY -0.547 2.251 2.084 2.91 1.006 2.018 1.059 0.65 

Honduras HND -1.08 2.834 2.087 2.75 1.005 1.71 1.095 0.734 

Croatia HRV 1.04 -1.092 3.007 3.721 0.999 1.251 0.652 0.4 

Haiti HTI -1.082 0.961 1.559 2.566 1.005 1.352 0.727 0.317 

Hungary HUN 1.039 -0.176 2.684 3.62 0.988 1.17 0.724 0.406 

Indonesia IDN -1.173 2.751 1.126 2.457 1.002 1.808 0.987 0.474 

India IND -1.169 2.718 1.186 2.488 1.004 1.712 0.946 0.457 

Ireland IRL 1.045 1.724 2.695 3.602 0.977 1.62 0.641 0.385 

Iran, Islamic 
Rep. IRN -0.659 2.698 0.976 2.236 1.014 1.706 0.834 0.398 

Iraq IRQ -0.551 2.485 1.179 2.387 0.985 1.622 0.714 0.347 

Iceland ISL 1.038 1.693 3.134 3.538 1.005 1.788 0.66 0.462 

Israel ISR 1.057 2.057 3.122 3.883 0.987 1.086 0.711 0.419 

Italy ITA 1.034 1.935 2.359 3.556 0.992 1.499 0.66 0.386 

Jamaica JAM -0.565 2.823 2.13 2.791 1.015 1.85 0.727 0.365 

Jordan JOR -0.554 2.739 1.999 2.691 1.013 1.544 0.712 0.397 

Japan JPN 1.039 1.922 2.366 3.626 0.994 1.526 0.654 0.374 

Kazakhstan KAZ -0.558 0.775 1.058 2.207 1.02 1.342 0.809 0.395 

Kenya KEN -1.076 1.123 1.404 2.381 0.993 1.241 0.82 0.452 

Kyrgyz Republic KGZ -1.174 -1.92 1.811 2.496 1.002 1.363 0.773 0.46 

Cambodia KHM -1.101 0.87 1.694 2.744 1.021 1.39 0.99 0.538 

Korea, Rep. KOR 1.021 1.746 2.626 3.758 1.05 1.768 0.701 0.381 

Kuwait KWT 1.044 2.391 3.152 3.736 0.983 1.294 0.716 0.412 

Lao PDR LAO -1.17 -1.976 1.783 2.737 1.015 1.368 1.171 0.696 

Lebanon LBN -0.53 -2.304 2.27 2.952 0.977 1.263 0.723 0.374 

Liberia LBR -2.182 0.764 1.667 2.646 0.993 1.484 1.198 0.69 

Libya LBY -0.554 2.375 1.061 2.19 1.023 1.552 0.933 0.487 

Sri Lanka LKA -1.173 2.671 1.543 2.662 1.013 1.581 0.755 0.351 

Lesotho LSO -1.08 -1.33 1.865 2.525 0.994 1.358 0.713 0.398 

Lithuania LTU 1.022 2.585 2.661 3.564 0.988 1.657 0.687 0.393 

Luxembourg LUX 1.035 -2.684 3.519 4.078 1.005 1.204 0.704 0.414 

Latvia LVA 1.012 -0.004 2.53 3.479 1.02 1.183 0.718 0.393 

Morocco MAR -1.167 2.472 1.224 2.275 1.006 1.733 0.798 0.418 

Moldova MDA -0.529 2.668 2.969 3.375 0.987 1.817 0.764 0.561 

Madagascar MDG -2.206 0.909 1.31 2.458 1.02 1.354 1.054 0.549 

Mexico MEX -0.547 2.919 1.252 2.401 0.997 1.578 0.904 0.476 
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North 
Macedonia MKD -0.545 0.316 2.864 3.216 1.013 1.538 0.668 0.471 

Mali MLI -2.179 0.529 -0.247 1.815 0.984 1.516 0.855 0.292 

Myanmar MMR -1.191 0.739 1.695 2.73 1.036 1.466 0.935 0.514 

Montenegro MNE -0.552 0.256 2.045 2.67 1.016 1.534 0.706 0.355 

Mongolia MNG -1.18 0.876 1.746 2.456 1.018 1.676 0.99 0.599 

Mozambique MOZ -2.2 0.957 1.252 2.147 1.032 1.322 0.964 0.543 

Mauritania MRT -1.172 1.207 0.318 2.132 1.01 1.271 0.781 0.281 

Malawi MWI -2.188 -1.325 1.007 2 1.011 1.552 0.737 0.359 

Malaysia MYS -0.549 2.956 1.388 2.702 0.996 1.802 0.8 0.374 

Namibia NAM -0.544 2.383 1.281 2.367 0.991 1.596 1.022 0.565 

New Caledonia NCL 1.02 -0.752 2.778 3.299 1.024 1.092 0.725 0.391 

Niger NER -2.179 0.649 0.871 2.099 0.996 1.531 0.99 0.464 

Nigeria NGA -1.188 0.942 1.137 2.39 1.004 1.353 0.793 0.382 

Nicaragua NIC -1.167 2.613 1.903 2.712 1.012 1.766 1.031 0.637 

Netherlands NLD 1.034 1.765 3.04 3.971 1.008 1.608 0.683 0.403 

Norway NOR 1.034 1.535 2.003 3.116 1.026 1.778 0.767 0.422 

Nepal NPL -1.072 -1.899 2.146 2.89 1.001 1.361 0.8 0.478 

New Zealand NZL 1.039 1.974 1.984 3.172 0.994 1.461 0.658 0.377 

Oman OMN 1.052 2.846 2.442 3.258 0.974 1.458 0.756 0.476 

Pakistan PAK -1.086 1.043 0.961 2.336 0.997 1.31 0.659 0.296 

Panama PAN -0.558 3.019 2.146 2.935 1.018 1.78 0.893 0.532 

Peru PER -0.552 2.548 2.142 2.966 1 1.976 1.11 0.692 

Philippines PHL -1.155 2.957 1.409 2.595 0.997 1.746 0.865 0.426 

Papua New 
Guinea PNG -1.167 0.865 1.714 2.438 1.005 1.407 0.91 0.574 

Poland POL 1.042 0.704 2.556 3.533 0.992 1.091 0.62 0.371 

Puerto Rico PRI 1.026 -0.549 4.222 4.488 1.02 1.267 0.712 0.425 

Korea, Dem. 
People's Rep. PRK -2.181 2.069 2.133 2.724 1.009 2.179 0.913 0.603 

Portugal PRT 1.032 2.714 2.673 3.61 1.016 1.471 0.694 0.384 

Paraguay PRY -0.551 0.16 1.401 2.468 1.001 1.596 0.813 0.423 

West Bank and 
Gaza PSE -1.168 -3.049 2.493 2.867 1 1.381 0.723 0.359 

Qatar QAT 1.039 2.842 3.013 3.774 1.011 1.322 0.719 0.416 

Romania ROU -0.532 2.537 1.951 2.738 0.979 1.699 0.666 0.376 

Russian 
Federation RUS -0.566 2.524 1.96 2.655 1.013 1.92 1.083 0.69 

Rwanda RWA -2.194 -1.12 1.567 2.3 1.009 1.544 0.744 0.412 

Saudi Arabia SAU 1.038 2.773 1.286 2.727 0.988 1.243 0.718 0.367 

Sudan SDN -2.18 1.155 0.506 1.874 1.003 1.278 0.913 0.398 

Senegal SEN -1.069 1.125 1.615 2.572 0.997 1.296 0.729 0.377 

Solomon 
Islands SLB -1.08 0.654 1.843 2.582 1.005 1.462 0.705 0.269 

Sierra Leone SLE -2.182 0.671 1.743 2.659 1.002 1.552 1.173 0.7 

El Salvador SLV -1.174 2.072 1.7 2.479 1.014 1.844 0.704 0.349 

Somalia SOM -2.179 1.149 1.009 2.02 0.99 1.264 0.978 0.533 
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Serbia SRB -0.538 -0.453 2.183 2.846 0.992 1.538 0.67 0.403 

South Sudan SSD -2.19 -0.682 1.061 2.006 1.005 1.522 0.872 0.469 

Suriname SUR -0.533 2.313 2.194 2.942 0.995 1.931 1.053 0.681 

Slovak Republic SVK 1.026 -0.218 2.918 3.704 1.007 1.162 0.709 0.405 

Slovenia SVN 1.045 -1.299 3.176 3.823 0.996 1.199 0.702 0.402 

Sweden SWE 1.049 0.361 2.757 3.481 1.001 1.085 0.647 0.402 

Eswatini SWZ -1.181 -1.631 1.398 2.239 1.018 1.486 0.717 0.317 

Syrian Arab 
Republic SYR -2.195 -0.342 0.42 1.79 1.032 1.537 0.731 0.292 

Chad TCD -2.198 0.483 0.952 2.102 1.023 1.544 0.98 0.483 

Togo TGO -2.197 -1.211 1.606 2.405 1.027 1.531 1.198 0.763 

Thailand THA -0.564 2.739 1.712 2.854 1.017 1.784 0.984 0.513 

Tajikistan TJK -1.183 -1.482 1.537 2.45 1.052 1.426 0.757 0.399 

Turkmenistan TKM -0.536 1.145 1.066 2.338 0.99 1.601 0.801 0.386 

Timor-Leste TLS -1.169 1.063 1.89 2.547 0.992 1.307 0.737 0.31 

Trinidad and 
Tobago TTO 1.025 2.965 3.372 4.024 1.002 1.906 0.729 0.416 

Tunisia TUN -1.079 2.259 1.281 2.303 1.012 1.881 0.728 0.374 

Turkey TUR -0.56 2.624 1.681 2.645 1.015 1.885 0.818 0.47 

Tanzania TZA -1.077 1.053 1.51 2.473 0.988 1.275 0.787 0.417 

Uganda UGA -2.175 -0.362 1.472 2.299 0.98 1.552 0.995 0.601 

Ukraine UKR -1.157 2.622 1.478 2.37 0.984 1.761 0.862 0.491 

Uruguay URY 1.037 -0.64 2.357 3.346 1.003 1.246 0.673 0.382 

United States USA 1.005 2.203 1.337 2.807 1.037 1.306 0.658 0.355 

Uzbekistan UZB -1.171 0.681 0.911 2.223 1.008 1.564 0.735 0.337 

St. Vincent and 
the Grenadines VCT -0.566 2.722 3.356 3.259 1.018 2.092 0.73 0.396 

Venezuela, RB VEN -1.177 2.651 1.718 2.56 1.019 1.775 1.127 0.691 

Vietnam VNM -1.157 2.926 1.466 2.67 0.984 1.761 0.955 0.473 

Vanuatu VUT -1.082 0.662 1.858 2.358 0.993 1.441 0.716 0.325 

Yemen, Rep. YEM -2.201 1.11 0.059 1.711 1.031 1.304 0.715 0.257 

South Africa ZAF -0.534 2.47 0.771 2.173 1.007 1.755 0.773 0.369 

Zambia ZMB -1.171 -1.135 1.437 2.303 0.994 1.379 0.884 0.512 

Zimbabwe ZWE -1.085 -0.232 1.027 2.145 1.011 1.449 0.724 0.352 

 

Table 8: Comparisons of contribution of emission source (NH3 to air, NOx to air, Nr to surface waters, Nr to groundwater) to 
total damage costs from agricultural nitrogen pollution. Total damage costs obtained by multiplying against agricultural 
emissions for 2015 obtained from EDGAR5.0 (NH3 and NOx - https://edgar.jrc.ec.europa.eu/dataset_ghg50) and Nr run-off 
and leaching from agricultural obtained from the IMAGE-Global Nutrient Model (GNM) spatial dataset In [102]. Comparison 
to GVA unreliable for small countries and countries subject to large transboundary effects (Table 10), but generally confirm 
findings of the EU Nitrogen Assessment that nitrogen pollution may be comparable to the GVA of agriculture in many 
countries. 

Country 
ISO 

3166-
1 

Damage 
cost 

using 
total Nr 

emissions 

Percent 
mean 

damage 
cost 
from 
NH3 

Percent 
mean 

damage 
cost 
from 
NOx 

Percent 
mean 

damage 
cost 

from Nr 
run-off 

Percent 
mean 

damage 
cost 

from Nr 
leaching 

Percent 
of 

damage 
costs 

against 
GVA ag 

https://edgar.jrc.ec.europa.eu/dataset_ghg50
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US$2020 
billions 

emission 
air 

emission 
air 

Afghanistan AFG 0.99 73.7% 15.1% 10.5% 0.6% 23.1% 

Angola AGO 0.864 62.1% 17.9% 18.5% 1.5% 10.6% 

Albania ALB 0.342 80.6% 11.9% 3.8% 3.6% 13.9% 

United Arab 
Emirates 

ARE 0.227 82.9% 17.0% 0.1% 0.0% 9.4% 

Argentina ARG 3.846 46.7% 35.4% 16.4% 1.5% 12.1% 

Armenia ARM 0.225 52.5% 8.2% 37.0% 2.2% 
 

Australia AUS 8.038 37.6% 17.9% 41.1% 3.4% 30.0% 

Austria AUT 2.642 84.8% 12.1% 1.3% 1.8% 49.3% 

Azerbaijan AZE 0.584 78.3% 14.3% 6.2% 1.2% 16.2% 

Burundi BDI 0.055 71.8% 25.2% 2.7% 0.4% 6.9% 

Belgium BEL 3.814 80.7% 12.8% 3.3% 3.2% 99.2% 

Benin BEN 0.274 67.2% 22.3% 9.4% 1.1% 9.1% 

Burkina Faso BFA 0.222 50.2% 33.0% 16.6% 0.1% 8.0% 

Bangladesh BGD 7.938 71.5% 15.7% 11.1% 1.7% 34.1% 

Bulgaria BGR 0.808 60.0% 19.9% 18.3% 1.7% 41.6% 

Bahamas, The BHS 0.027 92.3% 7.7% 0.0% 0.0% 33.3% 

Bosnia and 
Herzegovina 

BIH 0.702 87.0% 9.4% 2.8% 0.8% 61.6% 

Belarus BLR 0.901 70.7% 21.8% 4.6% 2.9% 16.2% 

Belize BLZ 0.126 68.6% 31.4% 0.0% 0.0% 80.1% 

Bolivia BOL 3.32 64.3% 11.6% 23.9% 0.2% 132.6% 

Brazil BRA 144.708 32.5% 10.7% 56.3% 0.5% 135.1% 

Brunei 
Darussalam 

BRN 0.183 94.6% 5.4% 0.0% 0.0% 157.2% 

Bhutan BTN 0.053 76.2% 14.4% 8.7% 0.7% 20.1% 

Botswana BWA 0.222 66.5% 12.7% 18.9% 1.8% 75.2% 

Central African 
Republic 

CAF 1.195 88.0% 11.2% 0.5% 0.3% 256.7% 

Canada CAN 8.919 62.3% 14.8% 13.2% 9.6% 30.7% 

Switzerland CHE 1.957 84.0% 10.4% 1.1% 4.5% 49.5% 

Chile CHL 2.593 54.5% 11.1% 23.4% 11.0% 28.9% 

China CHN 439.7 12.3% 2.2% 84.3% 1.2% 63.4% 

Cote d'Ivoire CIV 1.435 71.2% 19.3% 8.5% 1.0% 18.1% 

Cameroon CMR 1.472 70.7% 13.8% 14.2% 1.3% 31.4% 

Congo, Dem. Rep. COD 1.035 34.5% 16.3% 48.3% 0.9% 18.3% 

Congo, Rep. COG 0.066 18.2% 9.6% 64.0% 8.2% 10.2% 

Colombia COL 34.782 23.4% 3.8% 72.3% 0.5% 159.3% 

Comoros COM 0.018 70.3% 17.9% 10.8% 1.0% 6.4% 

Cabo Verde CPV 0.012 86.4% 13.6% 0.0% 0.0% 7.5% 

Costa Rica CRI 2.438 12.6% 3.5% 83.2% 0.7% 95.5% 

Cuba CUB 1.63 33.1% 13.5% 52.2% 1.3% 60.8% 

Cyprus CYP 0.289 91.6% 8.4% 0.0% 0.0% 65.4% 

Czech Republic CZE 2.946 72.0% 19.6% 3.0% 5.4% 82.6% 

Germany DEU 17.064 66.9% 15.3% 13.5% 4.3% 65.6% 
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Djibouti DJI 0.02 58.5% 13.4% 27.5% 0.6% 
 

Denmark DNK 4.442 77.0% 14.0% 3.3% 5.7% 118.1% 

Dominican 
Republic 

DOM 2.144 30.4% 6.1% 62.9% 0.7% 55.3% 

Algeria DZA 3.187 16.6% 3.0% 80.1% 0.3% 16.6% 

Ecuador ECU 5.83 34.2% 5.5% 60.0% 0.3% 67.0% 

Egypt, Arab Rep. EGY 2.129 49.7% 10.9% 39.3% 0.0% 6.3% 

Eritrea ERI 0.264 57.3% 12.2% 30.5% 0.1% 
 

Spain ESP 9.576 51.0% 12.9% 32.3% 3.8% 24.8% 

Estonia EST 0.552 74.4% 17.6% 5.0% 3.0% 73.9% 

Ethiopia ETH 3.829 71.8% 18.2% 9.3% 0.6% 22.5% 

Finland FIN 1.26 60.5% 13.0% 2.6% 23.9% 19.2% 

Fiji FJI 0.095 50.2% 9.6% 40.1% 0.2% 27.0% 

France FRA 16.365 58.8% 18.1% 15.1% 8.0% 36.0% 

Gabon GAB 0.385 18.6% 3.0% 77.2% 1.2% 51.5% 

United Kingdom GBR 11.82 60.6% 16.3% 19.6% 3.5% 66.9% 

Georgia GEO 0.422 73.9% 8.5% 11.9% 5.7% 35.3% 

Ghana GHA 0.854 72.7% 18.8% 8.2% 0.3% 8.4% 

Guinea GIN 1.185 74.0% 19.8% 5.9% 0.3% 75.0% 

Gambia, The GMB 0.022 52.8% 20.1% 26.5% 0.7% 6.0% 

Guinea-Bissau GNB 0.033 56.0% 27.7% 12.6% 3.7% 7.8% 

Equatorial Guinea GNQ 0.021 41.8% 25.0% 27.7% 5.4% 7.8% 

Greece GRC 3.258 35.7% 8.6% 54.0% 1.6% 35.4% 

Guatemala GTM 3.994 19.0% 8.3% 71.9% 0.7% 72.6% 

Guyana GUY 0.687 70.5% 18.1% 10.7% 0.7% 55.3% 

Honduras HND 4.538 15.3% 2.6% 81.8% 0.3% 192.1% 

Croatia HRV 1.241 81.0% 14.2% 0.8% 4.0% 76.3% 

Haiti HTI 0.311 45.1% 15.0% 37.6% 2.2% 14.2% 

Hungary HUN 2.563 72.6% 22.7% 1.6% 3.1% 53.5% 

Indonesia IDN 55.277 14.8% 6.1% 78.7% 0.3% 42.9% 

India IND 83.736 30.4% 9.5% 59.1% 1.0% 25.6% 

Ireland IRL 4.563 72.1% 13.6% 6.7% 7.6% 165.9% 

Iran, Islamic Rep. IRN 22.305 7.9% 1.4% 90.2% 0.4% 55.8% 

Iraq IRQ 2.053 15.7% 4.3% 79.3% 0.6% 34.6% 

Iceland ISL 0.211 53.5% 7.0% 36.7% 2.8% 22.0% 

Israel ISR 0.755 71.8% 13.8% 10.5% 4.0% 22.4% 

Italy ITA 12.292 52.3% 10.5% 33.4% 3.9% 31.3% 

Jamaica JAM 0.387 19.6% 4.6% 74.9% 0.9% 49.9% 

Jordan JOR 0.354 24.0% 4.4% 70.9% 0.7% 35.5% 

Japan JPN 6.617 48.9% 9.5% 29.2% 12.4% 11.2% 

Kazakhstan KAZ 1.71 40.8% 13.5% 43.2% 2.4% 21.0% 

Kenya KEN 1.832 69.3% 15.7% 13.9% 1.1% 15.1% 

Kyrgyz Republic KGZ 0.391 77.5% 13.4% 7.4% 1.8% 41.9% 

Cambodia KHM 1.499 55.4% 41.2% 2.3% 1.1% 35.9% 

Korea, Rep. KOR 5.079 50.9% 8.2% 23.9% 17.0% 19.2% 
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Kuwait KWT 0.328 93.6% 6.3% 0.0% 0.0% 56.0% 

Lao PDR LAO 2.418 75.6% 23.7% 0.2% 0.4% 131.1% 

Lebanon LBN 0.23 87.2% 9.6% 0.4% 2.8% 14.2% 

Liberia LBR 0.192 72.2% 16.7% 10.2% 0.9% 19.8% 

Libya LBY 0.292 29.5% 6.5% 61.2% 2.8% 
 

Sri Lanka LKA 1.047 30.5% 4.5% 63.4% 1.6% 17.7% 

Lesotho LSO 0.064 70.5% 17.5% 9.8% 2.1% 60.5% 

Lithuania LTU 1.54 62.9% 19.2% 13.5% 4.5% 108.6% 

Luxembourg LUX 0.248 89.0% 8.7% 0.1% 2.2% 202.9% 

Latvia LVA 0.529 72.9% 25.6% 0.9% 0.6% 47.1% 

Morocco MAR 8.295 8.0% 1.7% 90.1% 0.2% 54.5% 

Moldova MDA 2.726 32.7% 3.8% 63.5% 0.0% 302.9% 

Madagascar MDG 1.009 53.7% 13.6% 31.6% 1.0% 35.2% 

Mexico MEX 39.012 11.6% 3.3% 84.6% 0.5% 103.3% 

North Macedonia MKD 0.32 75.5% 9.1% 14.6% 0.8% 34.4% 

Mali MLI 0.447 54.7% 28.5% 16.0% 0.8% 10.6% 

Myanmar MMR 7.59 72.2% 20.5% 6.5% 0.7% 35.9% 

Montenegro MNE 0.1 88.2% 11.8% 0.0% 0.0% 27.4% 

Mongolia MNG 4.907 62.1% 7.6% 30.0% 0.3% 321.4% 

Mozambique MOZ 0.594 69.7% 13.3% 16.5% 0.6% 17.2% 

Mauritania MRT 0.138 55.0% 27.4% 17.3% 0.3% 13.2% 

Malawi MWI 0.213 75.3% 20.6% 3.5% 0.6% 9.0% 

Malaysia MYS 5.935 18.8% 4.7% 76.4% 0.1% 20.3% 

Namibia NAM 0.676 50.9% 10.8% 38.2% 0.1% 84.2% 

New Caledonia NCL 0.023 90.4% 9.6% 0.0% 0.0% 
 

Niger NER 0.896 72.1% 24.0% 3.8% 0.0% 26.0% 

Nigeria NGA 3.09 52.9% 29.3% 16.8% 1.1% 2.9% 

Nicaragua NIC 2.286 32.6% 6.6% 60.6% 0.2% 147.9% 

Netherlands NLD 7.316 83.1% 11.9% 0.7% 4.3% 45.8% 

Norway NOR 0.987 47.8% 10.4% 12.7% 29.1% 13.9% 

Nepal NPL 2.21 81.5% 16.0% 1.5% 1.0% 35.3% 

New Zealand NZL 5.567 28.2% 8.0% 54.0% 9.8% 45.9% 

Oman OMN 0.142 82.1% 17.9% 0.0% 0.1% 11.1% 

Pakistan PAK 5.451 63.9% 22.1% 13.4% 0.7% 11.6% 

Panama PAN 0.972 29.3% 6.0% 64.1% 0.6% 84.4% 

Peru PER 22.796 23.7% 3.5% 72.7% 0.2% 194.9% 

Philippines PHL 11.804 16.4% 10.4% 72.8% 0.5% 36.6% 

Papua New 
Guinea 

PNG 0.21 75.0% 9.4% 15.4% 0.2% 6.7% 

Poland POL 8.669 78.5% 17.0% 2.4% 2.1% 70.6% 

Puerto Rico PRI 0.673 91.1% 5.5% 0.6% 2.9% 
 

Korea, Dem. 
People's Rep. 

PRK 4.445 16.6% 2.5% 80.6% 0.3% 
 

Portugal PRT 2.201 57.7% 9.3% 30.0% 2.9% 43.9% 

Paraguay PRY 1.203 63.3% 31.0% 4.8% 0.9% 29.4% 
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West Bank and 
Gaza 

PSE 0.084 96.9% 1.8% 0.2% 1.1% 9.2% 

Qatar QAT 0.079 85.3% 14.7% 0.0% 0.0% 34.2% 

Romania ROU 5.147 35.3% 8.1% 56.4% 0.3% 53.8% 

Russian 
Federation 

RUS 64.202 26.7% 4.4% 68.6% 0.4% 101.7% 

Rwanda RWA 0.217 75.0% 16.2% 8.6% 0.2% 11.3% 

Saudi Arabia SAU 1.606 24.4% 6.6% 65.3% 3.7% 10.1% 

Sudan SDN 1.415 67.5% 24.2% 8.2% 0.0% 5.7% 

Senegal SEN 0.399 72.2% 21.6% 5.5% 0.8% 14.6% 

Solomon Islands SLB 0.008 51.9% 7.1% 34.0% 6.9% 
 

Sierra Leone SLE 0.397 71.0% 23.4% 5.1% 0.5% 24.6% 

El Salvador SLV 0.721 23.7% 8.6% 67.2% 0.6% 63.3% 

Somalia SOM 0.477 74.8% 16.8% 8.4% 0.0% 
 

Serbia SRB 1.151 76.2% 15.4% 8.0% 0.4% 39.5% 

South Sudan SSD 0.182 66.3% 14.2% 16.8% 2.6% 20.8% 

Suriname SUR 0.088 84.6% 15.4% 0.0% 0.0% 18.5% 

Slovak Republic SVK 1.194 77.2% 18.2% 2.1% 2.5% 44.3% 

Slovenia SVN 0.672 83.2% 10.9% 0.4% 5.5% 66.1% 

Sweden SWE 1.878 68.5% 14.4% 1.3% 15.7% 20.4% 

Eswatini SWZ 0.057 58.3% 35.8% 4.5% 1.5% 10.3% 

Syrian Arab 
Republic 

SYR 0.158 34.4% 24.9% 37.6% 3.1% 
 

Chad TCD 0.703 74.9% 18.1% 6.9% 0.1% 10.7% 

Togo TGO 0.554 80.8% 18.0% 0.9% 0.3% 43.2% 

Thailand THA 12.401 32.9% 17.2% 48.5% 1.4% 33.7% 

Tajikistan TJK 0.387 82.2% 13.5% 3.2% 1.1% 25.3% 

Turkmenistan TKM 0.73 62.6% 15.3% 21.9% 0.2% 
 

Timor-Leste TLS 0.103 41.2% 8.1% 50.7% 0.1% 51.0% 

Trinidad and 
Tobago 

TTO 0.444 94.1% 5.9% 0.0% 0.0% 316.7% 

Tunisia TUN 1.586 13.2% 2.6% 84.0% 0.2% 36.1% 

Turkey TUR 43.485 15.0% 3.4% 81.1% 0.5% 52.5% 

Tanzania TZA 1.968 60.4% 18.1% 19.6% 1.9% 19.6% 

Uganda UGA 1.506 79.3% 14.1% 6.5% 0.1% 15.7% 

Ukraine UKR 14.634 19.6% 5.3% 75.0% 0.2% 114.0% 

Uruguay URY 2.101 61.8% 21.9% 1.0% 15.3% 63.8% 

United States USA 65.822 26.6% 11.8% 50.0% 11.7% 36.9% 

Uzbekistan UZB 1.739 52.7% 15.7% 29.5% 2.1% 9.6% 

St. Vincent and 
the Grenadines 

VCT 0.007 88.0% 12.0% 0.0% 0.0% 16.6% 

Venezuela, RB VEN 5.465 50.9% 6.5% 42.2% 0.5% 
 

Vietnam VNM 14.711 32.6% 14.1% 52.4% 0.9% 59.2% 

Vanuatu VUT 0.021 87.8% 10.0% 1.7% 0.5% 12.5% 

Yemen, Rep. YEM 0.192 29.6% 15.8% 53.5% 1.0% 9.1% 

South Africa ZAF 7.391 9.2% 5.1% 84.8% 0.9% 75.7% 
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Zambia ZMB 1.065 80.8% 17.2% 1.3% 0.7% 55.9% 

Zimbabwe ZWE 0.296 59.0% 23.2% 11.2% 6.6% 20.6% 

 

Table 9: Selected countries sorted by run-off total damage costs (to ecosystems) larger than total air pollution damage costs 

(to humans), total damage costs yr-1 in millions US$2020 PPP using annual (2015) nitrogen emissions for agriculture (Table 

8), and the size of total damage costs yr-1 compared to annual (2015) GVA of agriculture 

Country 

Times 
larger mean 
ecosystem 
costs than 
mean air 
pollution 

costs  Country 

Mean 
damage 

costs 
(billions 
US$2020 

PPP)  Country 

Percent 
mean 

damage 
costs 

against 
GVA 

Russian 
Federation 49.6 

  

China 389.2 

  

Ireland 165% 

Iran, Islamic 
Rep. 45.4 

  

Brazil 133.1 

  

Colombia 159% 

Gabon 43.0   India 100.7   Peru 158% 

Peru 33.6 

  Russian 
Federation 63.5 

  

Nicaragua 156% 

Honduras 32.6   United States 58.8   Costa Rica 131% 

China 30.8   Indonesia 56.9   Brazil 124% 

Korea, Dem. 
People's Rep. 30.0 

  

Turkey 35.0 

  

Denmark 118% 

Algeria 28.6   Mexico 34.7   Ukraine 113% 

Colombia 27.5   Colombia 34.7   Guatemala 108% 

Morocco 22.7 

  Iran, Islamic 
Rep. 24.5 

  

Bolivia 107% 

Congo, Dem. 
Rep. 22.1 

  

Peru 18.5 

  Russian 
Federation 101% 

Indonesia 19.5   Germany 17.5   Belgium 100% 

Mexico 19.3   France 16.5   Mexico 92% 

Mongolia 19.0   Vietnam 15.6   El Salvador 90% 

Brazil 16.9   Ukraine 14.5   South Africa 88% 

South Africa 14.3   Thailand 12.5   Lao PDR 83% 

Ukraine 13.8   Italy 12.5   Czech Republic 83% 

Turkey 12.4 

 United 
Kingdom 11.5 

 

Croatia 78% 

 

Table 10: Countries suspected of transboundary distortion. All have lower HDI and lower production than respective high 
emission neighbours such as China, the EU, Russia, India, and Nigeria, that distorts weighting for anthropogenic atmospheric 
deposition of nitrogen. As these countries have low data for transboundary correction and few estimates for nitrogen 
damages, we have otherwise kept them in Table 6 and Table 7 and adjusted the factor 𝛾𝑙 , 𝑟𝑒𝑡, 𝑁𝐻3/𝑁𝑂𝑥 (column 3) to a 
maximum value of 1. Deposition on land is from a global spatial dataset of inorganic nitrogen deposition [105] and MH3 and 
NOx emissions totals from [6] 

Country 

Factor by which N-weight of 
deposition on land exceeds N-
weight of total NH3 and NOx 
emissions before correction 
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Afghanistan 1.9 

Angola 4.5 

Armenia 2.1 

Bhutan 13.1 

Bolivia 3.3 

Bosnia and Herzegovina 1.2 

Botswana 1.9 

Belize 5.9 

Myanmar 1.2 

Burundi 1.7 

Cameroon 3.1 

Central African Republic 13.5 

Chad 3.3 

Colombia 1.1 

Congo, Rep. 7.6 

Congo, Dem. Rep. 9.0 

Equatorial Guinea 13.0 

Eritrea 1.2 

Gabon 3.9 

Guinea 2.7 

Guyana 2.7 

Cote d’Ivoire 2.0 

Kyrgyz Republic 1.0 

Lao PDR 2.9 

Lesotho 1.1 

Liberia 4.9 

Mali 2.6 

Mauritania 1.9 

Mongolia 2.7 

Montenegro 1.6 

Mozambique 1.7 

Namibia 1.8 

Nepal 1.5 

Niger 1.8 

Papua New Guinea 2.2 

Paraguay 1.6 

Peru 1.4 

Rwanda 1.7 

Sierra Leone 2.0 

South Sudan 12.8 

Suriname 1.9 

Eswatini 1.6 

Tajikistan 1.4 

Togo 2.3 
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Uganda 1.2 

Zambia 2.3 

4.10.2 Distributions of marginal and total damage costs 
The tables in Section 4.10.1 describe mean values and lognormal fits of the samples for the marginal 

damage costs in the dataset. The following figures provide examples of the samples
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Figure 8: Examples of the distributions of marginal damage costs for nitrogen emissions for selected countries. All values in US$2020 PPP, per kg of Nr leached to groundwater for 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟  

(green), per kg of Nr run-off to surface water for 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟  (blue), per kg of NH3 emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 (black), and per kg of NOx emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥  (red). 
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Figure 9: Examples of the distributions of marginal damage costs for nitrogen emissions for selected countries. All values in US$2020 PPP, per kg of Nr leached to groundwater for 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟  

(green), per kg of Nr run-off to surface water for 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟  (blue), per kg of NH3 emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 (black), and per kg of NOx emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥  (red). 
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Figure 10: Examples of the distributions of marginal damage costs for nitrogen emissions for selected countries. All values in US$2020 PPP, per kg of Nr leached to groundwater for 𝑀𝐷𝐶𝑖,𝑔𝑟𝑑𝑤,𝑁𝑟  

(green), per kg of Nr run-off to surface water for 𝑀𝐷𝐶𝑖,𝑠𝑢𝑟𝑤,𝑁𝑟  (blue), per kg of NH3 emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝐻3 (black), and per kg of NOx emission to air for 𝑀𝐷𝐶𝑖,𝑎,𝑁𝑂𝑥  (red).
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The following figure (Figure 11), indicating the total costs of nitrogen pollution, should not be 

referred to without caveats. It is purely a damage estimate from present Nr pollution without 

accounting for the value provided to society from the use of nitrogen in agriculture. There is no 

comparison with a counterfactual, so it does not provide any indication of the economic value of 

food system transformation, i.e. the balance of value between decreasing nitrogen emissions and 

damage costs and what it costs to abate nitrogen emission with overall social welfare the same as 

present value. 

 

Figure 11: “hidden” cost of present nitrogen emissions from agriculture, obtained by summing marginal costs and total 
agricultural emissions of NH3, NOx, Nr to surface waters and Nr to groundwater across the 171 countries in Table 6. The joint 
distribution of marginal damage costs for individual countries are strongly correlated for air pollution damages, and several 
countries dominate costs, resulting in a skewed distribution shape for the addition of many correlated random variables. Total 
costs of ~1.4 trillion US$2020 PPP. The most likely cost is in the order of ~600 billion US$2020 PPP. Uncertainty in damage 
estimates indicate a 5% chance that damages could exceed ~3 trillion US$2020 PPP. 
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Figure 12: Disaggregation of “hidden” cost of present nitro en emissions of NH3, NOx, Nr to surface waters and Nr to 
groundwater across the 171 countries in Table 6. Total in Figure 11 disaggregated into total costs NH3 (black), total costs 
NOx (red), total costs Nr run-off (blue) and total costs Nr groundwater (green). NH3, NOx and Nr run-off total costs are on 
the same scale (trillions US$2020 PPP, or 1012). Nr groundwater costs in the scale of tens of billions (US$2020 PPP, 1010). 
The considerable uncertainty into the cost of loss of ecosystem services from Nr run-off (even when ecosystem services 
losses from Nr pollution are treated as uncorrelated across countries) introduce a long-tail for the total costs of Nr run-off. 
On the same scale, total costs of Nr leaching to groundwater would appear as a green line at 0.03*1012. 
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Figure 13: Boxplots for the highest damage costs using the quantity of Nr emissions for 2015. Boxplot shows the median as 
the largest cross line, and thick black lines show the interquartile range (25th to 75th percentiles). Note the large uncertainty 
in ecosystem service losses for countries with high amounts of nitrogen run-off to surface water results in fat tails. The mean 
is above the interquartile range for China, Brazil, and India. Measured by the median, Germany has the fourth largest damage 
costs, and the United States is second after China. For aggregating costs the mean is the appropriate measure (the mode and 
median are not additive), while risk assessment of uncertainty in systems with low frequency should examine the tail and the 
mode. 
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4.10.3 Statistical fits for value transfer of air pollution damages 
We describing fitting the EASIUR regression for conterminous US counties [95] to a reduced set of 

variables. EASIUR uses a regression model fitted to CTM modelling of creation of ammonium 

particulate matter given NH3, NOx and SOx concentrations. Data on 2016 social costs per county 𝑗 

(NH3: 𝐶𝐹𝐴𝑗  and NOx: 𝐶𝐹𝐴′𝑗) from EASIUR represent (in ppl lost yr-1 per US ton after dividing by the 

constant US$2016 8 million value of a statistical life used for all US counties) represents attributable 

human health damage of emission of 1 kg of NH3 or NOx per year, as a combination of air pollution 

exposure and vulnerability of US individuals [95]. Data on population density (𝑃𝑜𝑝𝐷𝑒𝑛𝑗 in ppl km-2) 

and land area (in km2) at the US county level was obtained from the 2017 US census 

(https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2017/) and data on 

emissions (𝑛𝑁𝐻3,𝑗, 𝑛𝑁𝑂𝑥,𝑗, 𝑛𝑆𝑂𝑥,𝑗 in kg yr-1) at the county level was available from the 2017 US 

national emissions inventory https://www.epa.gov/air-emissions-inventories/2017-national-

emissions-inventory-nei-data. 

Data was available for 3106 counties (𝑗 = 1,… ,3106) and the counties represent a wide range of 

combinations of NH3, NOx and SOx emissions between 104 and 107 kg yr-1 and population density 

between 0.05 and 3000 ppl km-2. A linear model for log(CFA) involving log of emissions NOx kg per 

km2 of area, NH3 kg per km2 of area, NH3, NOx, SOx kg emissions and average temperate (in Celsius) 

was examined. All variables were significant (p<0.01) with 𝑟2  =  0.679. Statistics for the model 

keeping population density and absolute emissions, still with 𝑟2  =  0.67, 

log(𝐶𝐹𝐴) = 𝛽0 + 𝛽1 ⋅ log(𝑃𝑜𝑝𝐷𝑒𝑛) + 𝛽2 ⋅ log(𝑛𝑁𝐻3) + 𝛽3 ⋅ log(𝑛𝑁𝑂𝑥) + 𝛽4 ⋅ log(𝑛𝑆𝑂𝑥) + 𝜖  

are in Table 11. 

Table 11: Statistics from linear model in log-axes fitting the marginal social cost estimates for NH3 across 3106 US counties 
to population density (𝛽1), NH3 emissions (𝛽2), NOx emissions (𝛽3) and SOX emissions (𝛽4). 

𝑟2  =  0.67 Estimate SE tStat  pValue 

𝛽0 -0.97039 0.096604 -5.5254  3.5585e-08 

𝛽1 0.43408  0.0064559 67.238  < 1e-300 

𝛽2 -0.091959 0.010199 -9.0165  3.3224e-19 

𝛽3 -0.35697 0.016811 -21.234 1.5533e-93 

𝛽4 0.072888 0.0073995 9.8504 1.4584e-22 

 

The most important statistic from Table 11 is not p-value. The p-values are artificial for so many data 

points from an existing model, but the r-squared value of 0.67 indicating 2/3 of variation across 

counties is explained by the parameters and explanatory factors for the remaining variation is 

unknown. 

The objective of our regression is to interpolate from variation across US counties the variation of 

other countries from the EU marginal damage cost of air pollution in Table 2. The linear model is 

results in scale invariant ratios, as described in the main text. The residuals for the error term 𝜖, and 

a visualisation of the fit using only the PopDen and NH3 emissions parameters, are in Figure 14. 

The model can only be used for interpolation, it is not physically representative across all ranges of 

NH3, NOx and SOx emissions (marginal damages increase as NH3 emissions reduce for the same 

population density). A full quadratic model for the full set of parameters, which is more physical and 

involves interactions terms improves explanation of variation to r-squared of 0.745. 

https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2017/
https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
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Figure 14: fit from Table 11 in 2 parameters (top panel) and residuals (bottom panel) for interpolation of attributable human 
health damage from NH3 emissions across US counties. PopDen is a more explanatory variable than NH3 emissions within 
the range of emissions for US counties (top panel), and residuals from the fit are approximately normally distributed in log-
log axes. The residuals are positive skewed, indicating that a sub-log-transform would have a better representation of a 
standard error term. 

The probability that the error term introduces an order of magnitude error is small, 

𝑃𝑟𝑜𝑏(𝜖 > log(10)) < 0.001%. 

A linear model for log(C A’) involving population density, emissions NOx kg per km2 of area, NH3 kg 

per km2 of area, NH3, NOx, SOx kg emissions and average temperate was examined. All variables 
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were significant (p<0.01) with 𝑟2  =  0.563. Statistics from linear model for NOx in log-axes involving 

the three factors with the most explanatory power, population density, NOx emissions and average 

temperature (𝑟2  =  0.515): 

log(𝐶𝐹𝐴′) = 𝛽′0 + 𝛽′1 ⋅ log(𝑃𝑜𝑝𝐷𝑒𝑛) + 𝛽′2 ⋅ log(𝑛𝑁𝑂𝑥) + 𝛽′3 ⋅ log(𝐴𝑇𝑒𝑚𝑝) + 𝜖 

are in Table 12 

Table 12: Statistics from linear model in log-axes fitting the marginal social cost estimates for NOx across 3106 US counties 
to population density (𝛽′1), NH3 emissions (𝛽′2), NOx emissions (𝛽′3) and SOX emissions (𝛽′4). 

𝑟2  =  0.515 Estimate SE tStat  pValue 

𝛽′0 99.592 3.4321 29.018  9.4631e-164 

𝛽′1 0.320 0.00603 53.033  < 1e-300 

𝛽′2 -0.1709 0.010823 -15.792  4.5447e-54 

𝛽′3 -18.612 0.60791 -30.617 8.2331e-180 

 

The most important statistic from Table 12 is not p-value. P values are artificial for so many data 

points from an existing regression model, but the r-squared value of 0.515 indicates half of the 

variation across counties is explained by the parameters and explanatory factors for the remaining 

variation is unknown. 

The objective of our regression is to interpolate from variation across US counties the variation of 

other countries from the EU marginal damage cost of air pollution in Table 2. The linear model is 

scale invariant for ratios, as described in the main text. 
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Figure 15: fit from Table 12 in 2 parameters (top panel) and residuals (bottom panel) for interpolation of attributable human 
health damage from NOx emissions across US counties. PopDen is a more explanatory variable than NOx emissions within 
the range of emissions for US counties (top panel). As expected PopDen and NOx emissions, predominantly from combustion, 
are correlated. Residuals from the fit (bottom panel) are approximately normally distributed in log-log axes. The residuals are 
positive skewed, indicating that a sub-log-transform would have a better representation of a standard error term. From 
examination of the data, and residuals, there was moderate evidence of mixture. Meaning that there was an additional 
explanatory factor creating subpopulations of counties with higher and lower marginal damages costs from NOx – the 
difference between the means of the group being about 30%. Examination the counties in the lower subcluster were more 
representative of agricultural NOx emissions. 
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The probability that the error term introduces an order of magnitude error is very small, 

𝑃𝑟𝑜𝑏(𝜖 > log(10)) < 0.001%. 

4.10.4 Examples of factors in the value transfer of air pollution damages 

Residuals from Figure 14 were used as uncertainty (error terms) for the transfer factors 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 for 

NH3 air pollution damages from the EU to country 𝑖 as described in the text. Examples of the 

transfer factor random variables, given correlated sampling of the error terms, using the NH3, NOx 

and SOx totals for 2015 for each country from the EDGAR5.0, and population density and average 

temperature data for 2015 from the UN are shown in Figure 16 to Figure 18.  

 

Figure 16: probable values of the ratio 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 estimating fraction of NH3 attributable marginal exposure and human health 

damage compared to the EU average. 1 represents the same attribution of human health damage from 1kg emission of NH3 
as the EU27 average, 0.5, 50% less, 1.5 50% greater, etc. 

Population density and very large NOx emissions play a large role in estimates of the differences in 

exposure. 
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Figure 17: probable values of the ratio 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 estimating fraction of NH3 attributable marginal exposure and human health 

damage compared to the EU average. 1 represents the same attribution of human health damage from 1kg emission of NH3 
as the EU27 average, 0.5, 50% less, 1.5 50% greater, etc. 

 

Figure 18: probable values of the ratio 
𝐶𝐹𝐴𝑖

𝐶𝐹𝐴𝐸𝑈
 estimating fraction of NH3 attributable marginal exposure and human health 

damage compared to the EU average. 1 represents the same attribution of human health damage from 1kg emission of NH3 
as the EU27 average, 0.5, 50% less, 1.5 50% greater, etc. 
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Residuals from Figure 15 were used as uncertainty (error terms) for the transfer factors 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 for 

NOx air pollution damages from the EU to country 𝑖, as described in the text. Examples of the 

transfer factor random variables, given correlated sampling of the error terms, using the NH3, NOx 

and SOx totals for 2015 for each country from the EDGAR5.0, and population density and average 

temperature data for 2015 from the UN are shown in Figure 19 to Figure 21.  

 

Figure 19 probable values of the ratio 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 estimating fraction of NOx attributable marginal exposure and human health 

damage compared to the EU average. 1 represents the same attribution of human health damage from 1kg emission of NOx 
as the EU27 average, 0.5, 50% less, 1.5 50% greater, etc. 

 

Figure 20: probable values of the ratio 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 estimating fraction of NOx attributable marginal exposure and human health 

damage compared to the EU average. 1 represents the same attribution of human health damage from 1kg emission of NOx 
as the EU27 average, 0.5, 50% less, 1.5 50% greater, etc. 
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Figure 21: probable values of the ratio 
𝐶𝐹𝐴′𝑖

𝐶𝐹𝐴′𝐸𝑈
 estimating fraction of NOx attributable marginal exposure and human health 

damage compared to the EU average. 1 represents the same attribution of human health damage from 1kg emission of NOx 
as the EU27 average, 0.5, 50% less, 1.5 50% greater, etc. 

4.10.5 Joint sampling marginal air pollution damages for NH3 and NOx 
The samples of marginal damages costs 𝑚𝑖,𝑎,𝑁𝐻3  and 𝑚𝑖,𝑎,𝑁𝑂𝑥, described in Section 4.3.6, across 

countries and between NH3 and NOx, were only weakly correlated by sampling from the terms 

𝑚𝑎,𝑁𝐻3  and 𝑚𝑎,𝑁𝑂𝑥 in Table 2, respectively, uniformly and independently. 

Significant correlation between the residuals and the marginal damage costs were found in 

approximating the EAISUR regression across US counties. This indicates that the unexplained 

variance in marginal damages has common factors such as atmospheric chemistry and human 

biology across counties. At the US County scale, the correlation between log(CFA) and the residuals 

(the unexplained variance) for NH3 is 0.58. where the correlation between log(C A’) and residuals 

for NOx was 0.72. We assume that the common factors remain important, at the same significance 

level for cross-country comparison of uncertainty in NH3 and NOx marginal damage costs. 

Pearson correlation (p=0.8578) was found between the natural logarithm of marginal damage costs 

from NH3 and NOx in the EAISUR estimates of across US counties, arising from the chemistry of 

ammonium particulate formation, coinciding human population exposure sites for concentrations of 

emission, and the same populations being exposed. Therefore, the individual distributions of 

𝑚𝑖,𝑎,𝑁𝐻3  and 𝑚𝑖,𝑎,𝑁𝑂𝑥 for each country, were fitted to lognormal distributions (Figure 22 to Figure 

27) and treated as marginals of a joint lognormal distribution and jointly sampled using the block 

correlation matrix representing the i-jth entry between the NH3 or NOx marginal costs in country 𝑖 

and the NH3 or NOx costs in country 𝑗: 
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1 0.58
0.58 1

⏞      

𝑁𝐻3𝑖−𝑁𝐻3𝑗

𝑝 𝑝
𝑝 𝑝
⏞  

𝑁𝐻3𝑖−𝑁𝑂𝑥𝑗

𝑝 𝑝
𝑝 𝑝

1 0.72
0.72 1

⏞      

𝑁𝑂𝑥𝑖−𝑁𝑂𝑥𝑗

]
 
 
 
 
 

 

 

Here p is the maximum value below 0.8578 (p was 0.634) such that the resulting covariance matrix is 

positive semi-definite (i.e., that the given correlation structure can be represented by a multivariate 

normal distribution). 

The differences between the original samples of 𝑚𝑖,𝑎,𝑁𝐻3  and 𝑚𝑖,𝑎,𝑁𝑂𝑥 and the outcome of joint 

sampling are exemplified in Figure 22 to Figure 27. For NH3 the uniform sampling of 𝑚𝑎,𝑁𝐻3 (which 

is chosen from a lack of any other information from [70]) widens the central mass of the 

distributions more, resulting in the lognormal fit undersampling the mid-range above the mean and 

oversampling the mode. 

 

 

Figure 22: Lognormal marginals (black lines) of the joint resampling of 𝑚𝑖,𝑎,𝑁𝐻3 for example countries. Red bars are 

histograms of the original samples of 𝑚𝑖,𝑎,𝑁𝐻3 using a discounting adjustment factor, exposure adjustment factor, and the 

EU marginal damage value from Table 2 
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Figure 23: Lognormal marginals (black lines) of the joint resampling of 𝑚𝑖,𝑎,𝑁𝐻3 for example countries. Red bars are 

histograms of the original samples of 𝑚𝑖,𝑎,𝑁𝐻3 using a discounting adjustment factor, exposure adjustment factor, and the 

EU marginal damage value from Table 2 

 

Figure 24: Lognormal marginals (black lines) of the joint resampling of 𝑚𝑖,𝑎,𝑁𝐻3 for example countries. Red bars are 

histograms of the original samples of 𝑚𝑖,𝑎,𝑁𝐻3 using a discounting adjustment factor, exposure adjustment factor, and the 

EU marginal damage value from Table 2. 
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Figure 25: Lognormal marginals (black lines) of the joint resampling of 𝑚𝑖,𝑎,𝑁𝑂𝑥 for example countries. Red bars are 

histograms of the original samples of 𝑚𝑖,𝑎,𝑁𝑂𝑥 using a discounting adjustment factor, exposure adjustment factor, and the 

EU marginal damage value from Table 2. 

 

Figure 26: Lognormal marginals (black lines) of the joint resampling of 𝑚𝑖,𝑎,𝑁𝑂𝑥 for example countries. Red bars are 

histograms of the original samples of 𝑚𝑖,𝑎,𝑁𝑂𝑥 using a discounting adjustment factor, exposure adjustment factor, and the 

EU marginal damage value from Table 2. 
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Figure 27: Lognormal marginals (black lines) of the joint resampling of 𝑚𝑖,𝑎,𝑁𝑂𝑥 for example countries. Red bars are 

histograms of the original samples of 𝑚𝑖,𝑎,𝑁𝑂𝑥 using a discounting adjustment factor, exposure adjustment factor, and the 

EU marginal damage value from Table 2. 

4.10.6 Statistical fits for relationships between agricultural GVA and nitrogen run-off 
Estimating damages from nitrogen run-off and deposition requires: (a) modelling of ecosystem 

service loss at a high spatial level of resolution and use values of ecosystem services, or (b) another 

proxy such as economic sector effected by nitrogen run-off for which there is coincident data. 

We examined using a fixed proportion of agricultural GVA as damages. This was not chosen as the 

transfer method in the end as, in existing studies from the EU and the US, the agricultural sector is 

not necessarily the most affected by Nr run-off [97] [98]. The relationship with the agricultural sector 

is more on the production of Nr than the effect of Nr run-off. 

Agricultural GVA shows relationships to Nr run-off through N inputs. The mean value of 𝑚𝑤,𝑁𝑟 from 

Table 2 and the estimate of marginal benefit for the EU 𝑚𝑏𝐸𝑈 = 220 $US2020 PPP (𝑟2 = 0.898) / 

kg Nr run-off (Figure 28 left panel) would suggest 𝜏 = 7.5% in ecosystem damages to the wider 

economy from Nr run-off in every 1 $2020 USD PPP of marginal benefit in agriculture in the EU. This 

percentage should increase for economies like China, where additional run-off is associated with 

decreases in marginal benefit to agricultural value. N saturation to ecosystems involving surface and 

coastal water generally occurs as Nr run-off increases and marginal benefit to agricultural value of Nr 

run-off (through Nr input) decreases. Lacking data except for assessments for the EU, USA and China, 

there was no global data set available to examine the relationship to marginal agricultural benefit. 

For Organisation for Economic Co-operation and Development (OECD) countries the OECD produces 

an environmentally adjusted multi-factor productivity measure and has a natural capital productivity 
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component, however the change in GDP per pollutant includes only a limited list of air pollutants 

and the natural capital productivity component includes only subsoil resources. 

Assuming a constant 𝜏 = 7.5% of marginal benefit of agricultural GVA in ecosystem damages to the 

wider economy from Nr run-off, then estimating a functional form of marginal benefit of Nr run-off 

GVA could be used as a method for transfer of damage costs. 

  

Figure 28: Statistical determination of marginal benefit for the EU27 countries of 2008 in left panel shows Nr run-off in 2000 
versus GVA for agriculture in 2000 for EU27 with three outliers as red. The slope of OLS regression through the origin is 0.0045 
(~1/220) and 𝑟2 = 0.898. In the right panel of data points for all countries, Japan (red) is an outlier with high GVA and little 
run-off, and China (blue) with lower GVA relative to higher run-off is skewing the OLS fit in linear co-ordinates. The EU27 
countries of the left panel are the green data points (reflected about the x=y line) and the slope of the green line is ~220. The 
residuals show high heteroscedasticity in the right panel and the linear fits are misleading in linear axes. An analysis using 
log-log axes was used below, which transformed the residuals to be approximately normally distributed. 

The relationship between GVA for agriculture and Nr run-off to surface waters for all countries in 

2000 was examined. China is an outlier to a generally superlinear relationship between GVA and 

total Nr run-off, and should be expected to have a higher proportion of damages from Nr to GVA 

than the method would describe. Data from 163 countries was used after removing outliers. A 

functional relationship between GVA and Nr run-off was used to smooth inconsistencies between a 

marginal damage for countries based on potential error in GVA reporting and Nr modelling, variation 

between years, or additional explanatory factors (only 70% of the variation is accounted for in Nr 

run-off). To fit a functional relationship that has value approximately 220 for EU economies but 

accounts for heteroscedasticity and uncertainty, data points were examined on a log-log scale and a 

Bayesian regression applied (Figure 30). 

   

Figure 29: Left panel: the relationship of GVA to Nr run-off for 163 countries (EU27 green dots, very high HDI countries blue 
dots, and others black dots) including the EU. In log-log axes, residuals to linear (dashed black), piecewise linear (red), and 
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quadratic (black), were normal fits and all 𝑟2 approximately 0.72. Piecewise linear and convex quadratic fits have slightly 
better fits statistics, demonstrating an eventual super-linear response in GAV to Nr run-off. Fitting between HDI >0.8 and HDI 
< 0.8 provided no better fits and almost identical slopes in log-log axes. Green solid line and black dotted line are the OLS 
linear fits for EU27 (green) and all (dashed black) transformed in log-log-axes. In the resolution of log-log axes 𝑟2 OLS linear 
fits are approximately 0.45 in log-log axes, with greater positive residuals at lower GVA values, another demonstration of 
superlinear behaviour not seen in quadratic fitting in linear axes. Fitting assumptions, with no clear rationale of better fit 
statistics, cause a spread of uncertainty and fail to represent the full variance in potential models. We chose a Bayesian 
quadratic regression in log-log axis, which could capture uncertainty and linear regression in log-log and linear axes, and 
most of the behaviours of piecewise linear models. 

Bayesian quadratic regression on the parameter space 𝛽 = (𝛽1, 𝛽2, 𝛽3) with 𝛽1 ≥ 0, 𝛽2 ≥ 0 and 

log10(𝐺𝑉𝐴(𝑥)) =  𝛽3 + 𝛽2𝑥 + 𝛽1𝑥
2 

offered the simplest way to capture model uncertainty in agricultural GVA against Nr run-off: 

 

Figure 30: Bayesian quadrative regression. Top left panel shows residuals of the MLE convex quadratic fit in log-log axes 
which were a good fit for a normal distribution. Top right marginals of the joint distribution of parameters  𝛽. Bottom left 
panel, mean (black line) and 5th and 95th percentile bands for the model in log-log axes. Bottom right panel, mean (black line) 
and 5th and 95th percentile band of the model for GVA against Nr run-off. 


