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Summary 

The original SPIQ-FS dataset provided marginal damage costs in US$2020 PPP for GHG emissions, 

nitrogen emissions to air and surface waters, land-use changes, etc. occurring in the baseline year of 

2020 [1-5]. This document examines the adjustments to the SPIQ-FS model required to provide a 

time series of marginal damage costs in US$2020 PPP for activities (emissions, etc.) occurring in 

2020, marginal damage costs in US$2030 PPP for activities occurring in 2030, marginal damage costs 

in US$2040 PPP for activities occurring in 2040, and marginal damage costs in US$2050 PPP for 

activities occurring in 2050, under scenarios of future economic conditions. The decadal time steps 

are nominal, but 2050 is chosen as the ceiling for the adjustments. 

To adjust the costs, economic scenarios need to be specified as a time series of socio-economic and 

demographic projections at national level, such as Gross Domestic Product (GDP PPP) growth [6, 7], 

Human Development Index (HDI) [8], population changes, labour participation, age dependency, 

urban rural ratio, Gross National Income per capita estimated by the Atlas method (GNI Atlas) [9], 

and trends in national total non-communicable disease rates such as cardio-vascular disease, type II 

diabetes, and neoplasms [10]. Many of these variables are correlated, and projections based on 

vector autoregression methods are advocated [11]. Table 2 provides a table of the economic and 

demographic variables suggested to adjust marginal damage costs. 

Given the economic and demographic variables in Table 2, some damage cost adjustments are 

straightforward. An example is inflating GDP damages by the GDP growth factor. Most cost models, 

and most common modules, within SPIQ-FS use the economic and demographic variables, alongside 

other variables, within linear and non-linear regressions derived from historical data. These 

relationships have been examined in SPIQ-FS to reduce the number of variables, to reduce the 

potential for correlation effects between the variables, and for explanatory power. Including the 

economic and demographic variable in the SPIQ model regressions affords non-linear adjustments to 

damages given projection of the economic and demographic variables. 

For example, disability adjusted life years (DALYs) per capita from protein-energy malnutrition 

historically fit a quadratic function of prevalence of undernutrition (PoU) and HDI. The two factors of 

PoU and HDI explain 70% of the variance amongst countries, and the 30% that is unexplained by 

more complicated differences in national healthcare, dietary intake, disease burdens, and social 

supports, etc. is reflected in modelled uncertainty in the damage costs. Models such as the 

International Food Policy Research Institute’s (IFPRI’s) MIRAGRODEP computable general 

equilibrium model [12] can estimate changes in PoU, which, alongside a projection of HDI, and 

another module of SPIQ-FS which sets the cost to GDP of a DALY, affords a projection of the damage 

costs from future changes in DALYs from protein-energy malnutrition. 

The design of the SPIQ-FS model, and the examination of relationships such as the one described in 

the previous paragraph, provides the means to adjust the damage costs estimates. Subsequent 

sections examine each component of the SPIQ-FS model for adjustment. Dependence on the 

economic and demographic variables in Table 2 is described, and relevant internal adjustments to 

the 2020 model components discussed. 

The conclusion of the examination is that there are achievable changes to the SPIQ-FS model that 

can provide adjustment to marginal damage costs for future scenarios, provided that: (a) those 

scenarios can be translated into time series projections of the economic and demographic 

dimensions listed in Table 2, and (b) the interaction of the scenarios with internal modelling 

components can be specified.  
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1 Adjustments to the SPIQ-FS model for temporal projections 

1.1 Components of the SPIQ-FS model 
The SPIQ-FS version 0 has model components for damage costs for four environmental outcomes 

from food system activities and, as of version 0.1, has model components for three health outcomes 

from dietary intake [1-5]. 

The environmental components calculate marginal damage costs with uncertainty for quantities of 

greenhouse gas (GHG) emissions, reactive nitrogen pollution to air and surface waters, withdrawal 

of blue water, and land-use changes, that are attributable to food system activities [13-16]. The 

uncertainty is modelled for each component along the pathway from the emission, withdrawal, or 

land-use change to the economic impact [17, 18]. 

The health components calculate marginal damage costs for changes in body mass index (BMI), for 

the burden of non-communicable disease (NCD) resulting from dietary intake, and for 

undernourishment. Again, with explicit uncertainty modelling. 

Some SPIQ-FS model components are based on open-source existing models, such as the cost of 

GHG emissions model is based on the IWG-SCGHG simulations of the social cost of carbon [19, 20], 

and the BMI and NCD costs factor through reconstructions of the respective University of 

Washington Global Burden of Disease models [21, 22]. Other components have been developed 

specifically within SPIQ-FS. These details are documented in Annex A of the SPIQ-FS documentation 

[1-5]. 

SPIQ also has common modules that are shared between the cost models. This is to ensure 

consistency. One such model is a GDP projection module for discounting impacts in years after the 

emission or pollution activity [23, 24]. It ensures a social discount rate, [25], is applied consistently 

within the same ‘economic future’ in all cost models . Another is a module for costing DALYs [26], 

which is used for costing air pollution effects from nitrogen pollution [27], malnutrition effects from 

blue water withdrawal [28], and disease burden from food consumption [16, 21]. 

1.2 Economic, development, and demographic factors 
The SPIQ-FS improves, reworks, or directly uses, already published models to estimate marginal 

damage costs. A set of marginal damage costs 𝑚 is the estimate of the additional cost (as measured 

by GDP loss) to a country 𝑐 for a unit increase to one element of a vector of quantities 𝑞 in the 

context of a vector of economic and demographic factors [29, 30]: 

𝑚(𝑐, 𝑞, 𝑒). 

The quantities, units, and definition of damages can be found in the SPIQ-FS documentation of 

version 0. SPIQ-FS is for large scale economic modelling, and it is used to generate a dataset that 

contains 𝑚(𝑐, 𝑞, 𝑒) for >160 countries and >10 quantities to be coupled with other economic 

modelling that determines the relevant unit increases in the quantities 𝑞 for those countries. The 

quantity changes 𝑞 from some baseline 𝑞0, as determined by that other economic modelling, 

estimates the decrease or increase in damages 𝐼(𝑐) for a country 𝑐 by 

𝐼(𝑐) ≔ 𝑚(𝑐, 𝑞, 𝑒) ⋅ 𝑞 − 𝑚(𝑐, 𝑞0, 𝑒0) ⋅ 𝑞0 . 

It is generally assumed that the economic and demographic factors 𝑒 for the country 𝑐 remain fixed, 

or that the changes are sufficiently small such that 𝑚(𝑐, 𝑞, 𝑒) ≅ 𝑚(𝑐, 𝑞, 𝑒0). Constant “shadow 

prices” are also often assumed, meaning that the quantity changes 𝑞-𝑞0 are sufficiently small, or the 
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damage costs are so inelastic to the quantity change 𝑞-𝑞0, that the approximation 𝑚(𝑐, 𝑞, 𝑒) ≅ 

𝑚(𝑐, 𝑞0, 𝑒0) is valid. 

Studies of the change in damages over decades, where the economic and demographic factors of 

countries are likely to change [31], and where it is unclear that damage costs are inelastic to quantity 

changes over such a time span [32], require that the marginal damage costs be specified for 

quantities and economic conditions covering the range of expected changes [33]. That is, for such 

studies, the assumption of constant marginal damage costs loses validity [34, 35]. 

Studies consider the changes over time under different versions of the future, called scenarios [32, 

36]. These different versions of the future may or may not specify different food systems or societal 

actions. Such distinctions are not relevant for the present argument, other than that we wish to 

estimate damage costs not only for a country 𝑐 with present economic and demographic factors 𝑒0 

(such as GDP, population, HDI, etc.) and quantities 𝑞0 at the present time. The indexing required for 

considering national damage costs in plausible futures is (𝑐, 𝑠, 𝑡), where 𝑒(𝑐, 𝑠, 𝑡) denotes a 

projection of the economic and demographic factors of a country 𝑐 at a time 𝑡 in the future under 

the scenario 𝑠. Similarly, 𝑞(𝑐, 𝑠, 𝑡) denotes the quantities of GHG emissions, or nitrogen emissions, 

etc. of a country 𝑐 at a time 𝑡 in the future under the scenario 𝑠. 

The vectors 𝑒(𝑐, 𝑠, 𝑡) and 𝑞(𝑐, 𝑠, 𝑡) may be jointly dependent. It is often the case in partial 

equilibrium economic modelling that the data 𝑒(𝑐, 𝑠, 𝑡) is used to set exogenous components for the 

endogenous calculation of 𝑞(𝑐, 𝑠, 𝑡), [37, 38]. In computable general equilibrium modelling, the 

economic and demographic data may be framed as constraints or determined endogenously with 

quantities through simultaneous and lag relationships [39, 40]. The coupling of 𝑒(𝑐, 𝑠, 𝑡) and 

𝑞(𝑐, 𝑠, 𝑡) as projections of 𝑒 and 𝑞 into the future under alternative scenarios is determined by a 

prior modelling step and is external to the SPIQ-FS model. 

We assume that the vectors 𝑒(𝑐, 𝑠, 𝑡) and 𝑞(𝑐, 𝑠, 𝑡) are determined and given. 

Coupling between the historical economic and demographic data and the historical level of 

quantities has been included in the SPIQ-FS modelling, within the functions 𝑚(𝑐, 𝑞, 𝑒). Additional 

adjustments, as described below, project forward changes in couplings deemed required as 

adjustments to the functions 𝑚(𝑐, 𝑞, 𝑒). 

Subsequent sections document adjusting the SPIQ-FS model to obtain estimates of marginal damage 

costs in future scenarios, that is vectors 

𝑚(𝑐, 𝑞(𝑐, 𝑠, 𝑡), 𝑒(𝑐, 𝑠, 𝑡)) 

for a country 𝑐 at a time 𝑡 in the future under the scenario 𝑠. The damages 

𝐼((𝑐1, 𝑠1, 𝑡1), (𝑐0, 𝑠0, 𝑡0) )

≔  𝑚(𝑐1 , 𝑞(𝑐1, 𝑠1, 𝑡1), 𝑒(𝑐1, 𝑠1, 𝑡1)) ⋅ 𝑞(𝑐1, 𝑠1, 𝑡1)

−   𝑚(𝑐0 , 𝑞(𝑐0, 𝑠0, 𝑡0), 𝑒(𝑐0, 𝑠0, 𝑡0)) ⋅ 𝑞(𝑐0, 𝑠0, 𝑡0) 

therefore allow a comparison for a fixed country (𝑐1 = 𝑐0) or set of countries over time in the same 

scenario (𝑠1 = 𝑠0), or a comparison for a fixed country (𝑐1 = 𝑐0) or set of countries at the same time 

(𝑡1 = 𝑡0) for different scenario. 

1.2.1 Specification of economic, development, and demographic factors for SPIQ-FS 
This section describes the economic, development and demographic dimensions used in the 

adjusted SPIQ-FS model. The time series 𝑡 ↦ 𝑒(𝑐, 𝑠, 𝑡) for each country 𝑐 and each scenario 𝑠 for the 
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dimensions in Table 1 need to be provided so that the adjusted SPIQ-FS model can calculate a set of 

marginal damage costs. 

Table 1: Tabular format of the economic, development and demographic variables used in the adjusted SPIQ-FS model. Each 
country, scenario, and time, triplet is specified values of the variables described in Table 2. The format is illustrated for two 
countries (A,B) under 3 scenarios (1,2,3) with 3 time steps (2020,2030,2050). 

Country 

(c) 

Scenario 

(s) 

Time 

(t) 

Economic, developmental, demographic variables 

(e) 

   G
D

P P
PP 

H
D
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N
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P
o

p
 

Lab
 Tren

d
 

EM
U

C
 

W
P

PA
 

W
D

FA
 

FP
PI 

A
ge D

ep
 

U
R

R
 

ER
P 

A
Tem

p
 

A 1 2020 * * * * * * * * * * * * * 

A 1 2030 * * * * * * * * * * * * * 

A 1 2050 * * * * * * * * * * * * * 

A 2 2020 * * * * * * * * * * * * * 

A 2 2030 * * * * * * * * * * * * * 

A 2 2050 * * * * * * * * * * * * * 

A 3 2020 * * * * * * * * * * * * * 

A 3 2030 * * * * * * * * * * * * * 

A 3 2050 * * * * * * * * * * * * * 

B 1 2020 * * * * * * * * * * * * * 

B 1 2030 * * * * * * * * * * * * * 

B 1 2050 * * * * * * * * * * * * * 

B 2 2020 * * * * * * * * * * * * * 

B 2 2030 * * * * * * * * * * * * * 

B 2 2050 * * * * * * * * * * * * * 

B 3 2020 * * * * * * * * * * * * * 

B 3 2030 * * * * * * * * * * * * * 

B 3 2050 * * * * * * * * * * * * * 

 

Table 2: Economic, development and demographic variables used in the adjusted SPIQ-FS model. Links describe the variable 
methodology and sources historical data series. 

Variable Description 
GDP PPP Gross Domestic Product (GDP) projection of country 𝑐 in scenario 𝑠 in international dollars 

in year 𝑡 (GDP in year 𝑡 in local currency exchanged to US dollars in year 𝑡 and adjusted for 
purchasing power parity in year 𝑡) 
https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD  

HDI Human Development Index of a country 𝑐 in scenario 𝑠 at time 𝑡. The human development 
index is a relative scale in [0,1], with 1 indicating the high level of development at time 𝑡. 
https://hdr.undp.org/data-center/human-development-index#/indicies/HDI  

GNI Gross National Income per capita (GNI) for country 𝑐 in scenario 𝑠 at year 𝑡 determined by 
the World Bank Atlas method (not adjusted for PPP). 
https://data.worldbank.org/indicator/NY.GNP.PCAP.CD  

Pop Population (headcount of individuals) projection of country 𝑐 in scenario 𝑠 at time 𝑡. 
https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022  

LabTrend The change in the ratio of labourers per capita for country 𝑐 in scenario 𝑠 at year 𝑡. Index 
with base value 1 corresponding to the ILO estimate of the labourers per capita for 
country c in year 2020. https://ilostat.ilo.org/data/  

EMUC Elasticity of the marginal utility of consumption (EMUC). Optional specification of EMUC 
for country 𝑐 in scenario 𝑠 for inter-temporal comparison of damages using social discount 

https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD
https://hdr.undp.org/data-center/human-development-index#/indicies/HDI
https://data.worldbank.org/indicator/NY.GNP.PCAP.CD
https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022
https://ilostat.ilo.org/data/
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rates. https://www.jstor.org/stable/24440019  
WPAA Water Productivity Agricultural Adjustment for country 𝑐 in scenario 𝑠 at time 𝑡. A 

proportion index estimating increases in volume of food supply (as a proxy for both caloric 
and value increase) from same water supply and same real costs of production. Baseline is 
1 in 2020. Due to the large proportion of freshwater consumed by the agricultural sector 
in crop production, water efficiency indicators are defined by water productivity in 
agriculture https://www.sdg6data.org/indicator/6.4.1  

WDFA Water Deprivation Factor Adjustment for country 𝑐 in scenario 𝑠 at time 𝑡. A proportion 
index estimating increases in economic output across all sectors from the same water 
supply. Baseline is 1 in 2020. https://ec.europa.eu/eurostat/web/products-datasets/-
/t2020_rd210  

FPPI Food Producer Price Index (FPPI) projection of country 𝑐 in scenario 𝑠 at time 𝑡 with base 
year the FAO Producer Price Index 2020. FPPI is the increase or decrease in farm gate 
prices averaged across commodities. http://fenix.fao.org/faostat/internal/en/#data/PP  

AgeDep World Bank age dependency ratio is the ratio of dependents--people younger than 15 or 
older than 64--to the working-age population--those ages 15-64. Data are shown as the 
proportion of dependents per 100 working-age population. 
https://data.worldbank.org/indicator/SP.POP.DPND  

Urban Rural 
Ratio (URR) 

World Bank urban population refers to percentage of people living in urban areas as 
defined by national statistical offices. The data are collected and smoothed by United 
Nations Population Division. https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS  

ERP Relative growth in pricing of ecosystem services compared to general consumption 
growth. Combination of changes in the marginal value of ecosystem services due to the 
pricing of natural capital flows by the economy (demand), technological advances in the 
efficiency of using natural capital, and reduced supply from environmental damage or 
increased supply from reversing environmental damage. 
https://www.pbl.nl/en/publications/relative-price-increase-for-nature-and-ecosystem-
services  

ATemp National mean temperature increase in degrees Celsius of a country 𝑐 in scenario 𝑠 at time 
𝑡. Base value is 0 when year 𝑡 is 2020. 
https://climateknowledgeportal.worldbank.org/download-data  

 

The time variable 𝑡 should be between 2020 and 2050. Validity of historically trained regressions in 

SPIQ-FS would be expected to get significantly weaker with increased uncertainty for time spans 

outside 2050. Since impacts for food system activities in 2050 continue to occur for decades [13], or 

centuries in the case of GHG [41], discounting the future damages creates additional uncertainty [42, 

43]. The default recommendation is that discounting rates be specified for 2020-2100 for activities in 

the period 2020-2050. Projections are available up to 2100. Time spans beyond 2050 would push the 

need to project GDP growth for individual countries beyond 2100. 

1.2.2 Coding the economic, development, and demographic factors into SPIQ-FS 
A SPIQ-FS build means that the SPIQ-FS model is run to create a dataset of marginal damage costs 

𝑚(𝑐, 𝑞(𝑐, 𝑠, 𝑡), 𝑒(𝑐, 𝑠, 𝑡)) indexed by (𝑐, 𝑠, 𝑡). The time series 𝑡 ↦ 𝑒(𝑐, 𝑠, 𝑡) for each country 𝑐 and 

each scenario 𝑠 as in Table 1 are represented for a SPIQ-FS build in a build file. The original SPIQ-FS 

build, or build 0, described in Annex A, is indexed by (𝑐, 𝑠, 𝑡) where 𝑡 = 2020 and the single scenario 

𝑠 is the baseline “the world as was at the start of 2020”. 

The scenarios 𝑠 specified by a particular study, and which are encoded in the build file, are hereafter 

referred to as build scenarios. 

The build file contains a structure. One of the elements of the structure is a table containing the 

values 𝑒(𝑐, 𝑠, 𝑡) of the economic and demographic parameters for each country to be studied at 

each time step and for each build scenario (Table 1). That is, the table contains the time series 

https://www.jstor.org/stable/24440019
https://www.sdg6data.org/indicator/6.4.1
https://ec.europa.eu/eurostat/web/products-datasets/-/t2020_rd210
https://ec.europa.eu/eurostat/web/products-datasets/-/t2020_rd210
http://fenix.fao.org/faostat/internal/en/#data/PP
https://data.worldbank.org/indicator/SP.POP.DPND
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://www.pbl.nl/en/publications/relative-price-increase-for-nature-and-ecosystem-services
https://www.pbl.nl/en/publications/relative-price-increase-for-nature-and-ecosystem-services
https://climateknowledgeportal.worldbank.org/download-data
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projections of the economic and demographic variables of last section for each country under each 

build scenario. One build generates the marginal costs for all countries, all time steps, and all 

scenarios specified in the structure. 

The build structure contains other variables determined by the build scenarios that are used 

internally in the costing models. As an example, the GHG costing model uses IGW-SCGHG 

simulations [19, 20]. The social cost of carbon simulations conducted by IGW-SCGHG used 5 

scenarios to explore future uncertainty in economic activity. A weighting matrix is used to describe 

similarity of a build scenario, at a particular time, to the IGW-SCGHG simulation scenarios used for 

simulations of the social cost of carbon. The weights can change for each time step, reflecting that 

the similarity of the build scenarios to the IGW-SCGHG simulations scenarios can change over time. 

1.3 Adjustment to SPIQ-FS model components 
Annex A contains the full documentation of chosen components, modelling results, analysis of 

uncertainty, and caveats for the SPIQ version 0 models [1-5]. Here we stylise the components of 

each model as a schematic and depict their interaction with: (a) the quantities 𝑞 such as GHG 

emissions that are determined by a given study and (b) the economic and demographic factors 𝑒 of 

build scenarios, discussed in Section 1.2 and outlined in Table 2. We also discuss internal model 

adjustments, such as the use of a weighting matrix as described in the preceding paragraph. 

We start with the common modules and then move to the environmental and health costing 

models. 

1.3.1 Module 101: growth projections for discounting and inflating 
Module 101 specifies GDP growth projections 𝑔 from 2020-2100 for each year for each country 𝑐 in 

each scenario 𝑠. GDP is measures in purchasing power parity (PPP) [7]. The projections are used to 

downscale global GDP projections and must be fully consistent, or used to construct, the GDP 

variable in the data 𝑒(𝑐, 𝑠, 𝑡) provided. 

SPIQ uses the growth projections for finer resolution inflation and discounting of future damages in 

the water, land-use, and air pollution costing models. In the GHG cost model, the growth projections 

are also used to match build scenarios as closely as possible to the IGW-SCGHG simulations of the 

social cost of carbon in the GHG cost model [19, 20]. The IGW-SCGHG provides simulations for a 

range of discounting rates (2.5%, 3%, and 5%) [19]. The growth rates specified in module 101 are 

matched as closely as possible in a build file to the corresponding IGW-SCGHG interest rate. 

As fundamental economic data, the country level and annual GDP growth times series can support 

filling in time series of other economic variables in Table 1 using vector autoregression type models 

trained on historical relationships [11]. 

SPIQ default GDP growth projections for 2020-2100 use future GDP growth projections for the 5 

Shared Socioeconomic Pathways (SSPs) over the periods 2020-2040 and 2040-2100 from Table 3 in 

[24]. [24] uses its own division of countries into high, medium, and low income as of 2020 with 

different projections for each group. Countries are assigned the GDP projections for their income 

groups. 

Default builds of SPIQ that do not specify future scenarios use [24] and sample randomly from the 5 

SSPs to simulate uncertainty in future GDP growth. It is recommended that the scenarios 𝑠 in custom 

builds be specified so that they represent a range of potential future GDP growth trajectories, and 

future uncertainty in GDP growth represented by the build scenarios be used rather than the 

random sampling of adjusted projections from [24]. 
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Figure 1: GDP growth rates for countries and scenarios. Other settings in a build file can be used to set the social discount 
rate for discounting future damages. 

When GDP growth trajectories are used for discounting, the default discount rate is treated as a 

Ramsey social discount rate (SDR) with time preference of 0 and in with constant elasticity of 

marginal utility of 1. These settings can be adjusted for custom builds. The time preference can be 

set to a global value in a SPIQ build file, and the elasticity of marginal utility can be separately set for 

each country and each scenario as an economic parameter (EMUC in Table 2) [44]. The literature on 

SDR is extensive [25, 45], but it is recommended to use a conservative value for intergenerational 

wealth transfer given current wealth generation from food system activities may be endogenous to 

the risk of the ability to enjoy deferred resource use [46-48]. The potential volatility of future welfare 

accrual and the nature of consumption as a proxy for welfare in a future with environmental and 

health damages, means that lower settings for the elasticity of marginal utility are recommended 

[49-51]. 

Consistency between module 101 and the GDP variable in Table 1, necessitates the constraints 

𝐺𝐷𝑃(𝑐, 𝑠, 𝑡) = ∏(1 + 𝑔(𝑐, 𝑠, 𝑟)) ⋅ 𝐺𝐷𝑃(𝑐, 𝑠, 2020).

𝑟≤𝑡

 

1.3.2 Module 102: cost of DALYs 
This module costs disability-adjusted life years (DALYs) [52-54] and is used for costing air pollution 

effects on humans from nitrogen pollution [55], malnutrition effects from blue water withdrawal 

[28], and disease burden from poor or insufficient diets [56-58]. 

As explained in Annex A SPIQ-FS documentation, DALYs arise from multiple disease outcomes and 

disease pathways, including but not limited to cardiovascular disease from air particulate matter 

[59], diabetes type II from diets high in sugar and low in whole grains [60], neoplasms from diets low 

in nutrients and high in red and processed meats [61], and protein-energy malnutrition [62]. The 

module intends to cost the economic burden to society due from premature death and the effects of 

disablement for each disease outcome and disease pathway [56, 57, 63]. 

Since the marginal costs need to be consistent across costing models, the cost from DALYs focus only 

on so-called indirect costs on income equivalent welfare [64]. Direct costs amount to economic 

exchanges between sectors and actors within the economy, [65], and are not included since there 
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are few estimates of the inefficiency of the direct costs flowing to the health sector from individuals 

or government. Income equivalent welfare treats the population homogeneously, so it does not 

include potential welfare losses from direct costs being borne disproportionately by lower income 

households. 

Version 0 of the SPIQ model costs a DALY in a country by productivity loss [66], and it is simplified as 

the same amount irrespective of the disease outcomes or the disease pathway. More details and 

considerations are in Annex A [5]. Later versions of SPIQ-FS will consider productivity losses from 

DALYs for different outcomes, starting with primary categorical divisions into cardiovascular disease, 

type II diabetes, and neoplasms, [67]. 

The cost of a DALY in country 𝑐 in scenario 𝑠 is in GDP PPP in the year 𝑡. 

The build file which contains the output of module 102 contains 3 cost values for each index (𝑐, 𝑠, 𝑡). 

𝐶𝐹1(𝑐, 𝑠, 𝑡) uses on the global average value of labour productivity as projected from 2017 ILO data 

(https://ilostat.ilo.org/data/). Each country has the same value. 

𝐶𝐹3(𝑐, 𝑠, 𝑡) uses on the national average value of labour productivity as projected from 2017 ILO 

data. Each country has a different value, and the difference between countries can be up to 2 orders 

of magnitude in PPP terms. 

𝐶𝐹2(𝑐, 𝑠, 𝑡) uses the average value of labour productivity within World Bank income brackets (low 

income, low-middle income, middle-high income, high income) as projected from 2017 ILO data. 

Each country is assigned the value of its income bracket as time 𝑡 in scenario 𝑠. 

Advantages and disadvantages for using any of the 3 values are discussed in Annex A [5]. By default, 

following [67], a SPIQ-FS build uses 𝐶𝐹2 values. 

 

Figure 2: (a) Labour productivity is calculated from labour productivity from ILO 2017 data for country c inflated using 
historical GDP growth to 2020. The value 𝐿𝑎𝑏𝑃𝑟𝑜𝑑(𝑐, 0,2020), is inflated by future GDP growth and altered by the 
projection in labourers: 

𝐿𝑎𝑏𝑃𝑟𝑜𝑑(𝑐, 𝑠, 𝑡) =  𝐿𝑎𝑏𝑃𝑟𝑜𝑑(𝑐, 0,2020) ⋅
𝐺𝐷𝑃(𝑐, 𝑠, 𝑡)

𝐺𝐷𝑃(𝑐, 0,2020)
⋅

𝑃𝑜𝑝(𝑐, 0,2020)

𝑃𝑜𝑝(𝑐, 𝑠, 𝑡) ⋅ 𝐿𝑎𝑏𝑇𝑟𝑒𝑛𝑑(𝑐, 𝑠, 𝑡)
 

(b) Criteria for belonging to income at time t depends on GNI of country c in scenario s at time t. The income brackets 
themselves, i.e. their upper and lower thresholds at time t, are projected from WB historical shifts in thresholds. The labour 
productivity is averaged within projected income brackets, and a PPP $/DALY cost assigned according to the income bracket 
a country c belongs to at time t in the scenario s. Figure shows calculation of the output 𝐶𝐹2 value. Other outputs follow the 
same calculation, with an adjustment to the ‘income brackets’ being either world (one bracket) in the case of 𝐶𝐹1, or 
individual countries as ‘brackets’ in the case of 𝐶𝐹3. 

https://ilostat.ilo.org/data/
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The formula for projected forward labour productivity is written in such a way as to use relative 

growth or trend instead of absolute values. GDP growth, population growth, and the growth or 

deflation in the labourers per capita are used to calculate future labour productivity from present 

data [68]. 

1.3.3 Module 103: DALYs per capita from undernourishment 
This module calculates the change in DALYs per capita due to protein-energy malnutrition given a 

change in the prevalence of undernourishment [62, 69], for the country 𝑐 at a time 𝑡 in the future 

under the scenario 𝑠. It is based on a robust truncated quadratic relationship between historical 

DALYS per capita due to protein-energy malnutrition from World Health Organization (WHO) 

historical data [70], prevalence of undernourishment (PoU) measured by the UN Food and 

Agriculture Organization (FAO), and HDI as calculated by United Nations Development Programme 

(UNDP). HDI is a primary explanatory factor for when undernutrition in a population translates into 

preventable disease and death [69]. Bayesian regression is used [71], meaning that a probability 

family of quadratic relationships is determined from historical data to account for variance not 

explained by PoU and HDI. The partial derivative with respect to PoU of the (family of) quadratic 

surface(s) results in a relationship between change in DALYs and change in PoU that depends on HDI. 

HDI has more explanatory power in the regression than GNI or GDP. More detail can be found in 

Annex A [3]. 

Heteroskedasticity in the errors over different HDI ranges means that the uncertainty is also 

modelled with dependence on HDI. The relationship is robust to data from historical years before 

the present. The Bayesian quadratic regression is used to project forward the random variable of 

change in DALYs per capita due to protein-energy malnutrition given a change in the prevalence of 

undernourishment by using the HDI for the country 𝑐 at a time 𝑡 under the scenario 𝑠. 

The output of module 103 can be considered as the uncertain numbers of DALYs per person 

undernourished in country 𝑐 in scenario 𝑠 in the year 𝑡. 

Module 103 is used in the water costing model as part of the malnutrition cost component, and it is 

used in the costing of undernourishment model. Module 103 has a second variant, that is based on a 

similar regression between DALYs from protein-energy malnutrition involving PoUW, prevalence of 

underweight persons (BMI < 18.5 [72, 73]), instead of PoU. The output of the variant can be 

considered as the numbers of DALYs per person underweight in country 𝑐 in scenario 𝑠 in the year 𝑡. 

Using only protein-energy malnutrition DALYs may undercount attributable all outcomes DALYs from 

prevalence of undernourishment and underweight in the population [74]. Module 103 is used in 

costing model 02 where changes in undernourishment are due to reduction in domestic food supply, 

where protein-energy malnutrition may be expected to be the predominant outcome. Use of the 

PoUW variant of Module 103 should be considered in the context of the drivers of change in PoUW. 

In adults in developed countries, the drivers of underweight prevalence are more diverse than food 

supply and food prices, and protein-energy malnutrition as a disease outcome is expected to capture 

proportionally less of the population outcomes from underweight prevalence [75]. 
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Figure 3: The partial derivative of protein-energy DALYs per against PoU in a Bayesian quadratic regression allows the 
DALYs per person undernourished to be treated as a random variable and projected forward using HDI. 

1.3.4 Module 104: ecosystem service values 
This module calculates ecosystem service values based on statistical analysis of the Ecosystem 

Service Valuation Database (ESVD) [76, 78]. 

Despite the database having nearly 3000 useable valuations of ecosystem services for 49 ecosystem 

categories and 23 service categories, the database does not have sufficient statistical coverage of 

countries, ecosystems, and services to use directly. ESVD uses the TEEB Classification and CICES 

(v5.1) classification systems of ecosystems and services [79, 80]. The database values were 

aggregated into entries from 4 HDI brackets, the 8 biomes in which the ecosystems classifications sit 

- coral reefs, coastal systems, inland wetlands, lakes and rivers, tropical forest, temperate forest, 

woodland and shrubland, and grasslands, and into the three primary categories of services used in 

the ESVD – provisioning, regulating, and cultural services. The aggregated values had enough 

datapoints to draw samples and estimate total value of ecosystem services provided by 8 biomes per 

hectare (ha) per year (yr). See Annex A [4]. 

The output of module 104 provides ecosystem service values in international dollars for 8 biomes in 

country 𝑐 in scenario 𝑠 in the year 𝑡. Ecosystem service marginal values are used to determine 

damages to ecosystems from surface water run-off in the nitrogen emission costing model, and 

land-use changes in the land-use costing model. An extension of the blue water withdrawal costing 

model, which currently does not include the impact of future water scarcity on environmental flows 

and services outside of food provisioning, would also use ecosystem service marginal values. 
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Figure 4: Aggregating values from the ecosystem services valuation database (ESVD) by HDI bracket, and by service 
category (provisioning, regulating, cultural) provides enough datapoints to estimate the distributions of ecosystem service 
value. The ESVD is in international dollars in 2020. Inflating the marginal values to a future time 𝑡 in scenario 𝑠, for a 
country 𝑐, involves two adjustments to overall economic growth represented by GDP growth. Ecosystem services may 
become more or less valuable in the future due to reduced supply from environmental damage or increased supply from 
reversing environmental damage. Ecosystem services may also become more or less valuable depending on the utilisation 
of natural capital by the economy, including technological advances in the efficiency of using natural capital. The combined 
effect of future changes in supply and demand of ecosystem services is represented by a relative price factor (ERP) between 
general produced capital flows represented by GDP and natural capital flows represented by ecosystem services. Once 
adjusted values are aggregated by service category and HDI bracket, samples are obtained for a country 𝑐 by using the 
distribution corresponding to the HDI bracket of country 𝑐 at time 𝑡 in scenario 𝑠. 

The ESVD has ecosystem marginal values in international dollars in 2020, and we assume the 

marginal values in the ESVD relate to the value provided to an economy in 2020 by the ecosystem. 

Inflating the marginal values to the value provided by an ecosystem at a future time t in scenario s, 

for a country c, involves adjustments to overall economic growth represented by GDP growth. The 

future supply and demand of ecosystem services is complex [81-83]. Ecosystem services may 

become more or less valuable in the future due to reduced supply from environmental damage or 

increased supply from reversing environmental damage [84]. Ecosystem services may also become 

more or less valuable depending on the utilisation of natural capital by the economy [85], including 

technological advances in the efficiency of using natural capital. SPIQ-FS damage estimates are 

based on consumption as income-equivalent welfare, therefore a relative price factor (ERP) for 

ecosystem services [86-88], with a base of 1 in the year 2020, is used to adjust GDP PPP growth. 

Once adjusted values are aggregated by biome, service category, and HDI bracket, samples are 

obtained for a country c by using the distribution corresponding to the HDI bracket of country 𝑐 at 

time 𝑡 in scenario 𝑠. 

1.3.5 Cost Model 01: marginal social costs of GHG emissions 
The GHG costing model uses IGW-SCGHG simulations [19, 20, 89, 90]. The social cost of carbon 

simulations conducted by IGW-SCGHG used 5 scenarios and 3 discount rates to explore future 

uncertainty in economic activity. The IGW-SCGHG simulations provide, separately, samples of the 

social cost of a 1 metric ton emission of CH4, CO2 and N2O gases [90-96] derived from Monte Carlo 

modelling for each IGW-SCGHG scenario, each discount rate, and for the emission occurring in the 
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year 2020, 2030, 2040 or 2050. The IGW-SCGHG simulations can therefore be considered sets of 

samples of the marginal social cost, for each gas, indexed by IGW-SCGHG scenario, discount rate, 

and emission year. 

The SPIQ-FS file requires that weights be specified to indicate the similarity of the build scenarios 

(𝑠, 𝑡) “an emission of 1 metric ton of the specified gas at time 𝑡 in the future 𝑠” to the IGW-SCGHG 

scenario, discount rate, and emission year. The weights are used to generate a joint sample of IGW-

SCGHG scenario, discount rate, and emission year. For each element of the joint sample of IGW-

SCGHG scenario, discount rate, and emission year a sample of the social cost of a GHG is then taken 

from the samples of SC corresponding to that IGW-SCGHG scenario, discount rate, and emission 

year. In this way, a sample set of SC-GHG values are obtained for the pair (𝑠, 𝑡). 

As explained in Annex A [1], the social costs of greenhouse emissions are global values and do not 

differ between countries since economic inequalities are not accounted [97, 98]. Social cost is taken 

as a lower estimate of damage cost, it represents the damage cost in an economy with optimal 

abatement. The output of the cost model 01 is a set of samples of the social cost of CH4, or CO2, or 

N2O, for each build scenario and emission time (𝑠, 𝑡), that is, an emission of 1 metric ton of the 

specified gas at time 𝑡 in the future 𝑠. As also explained in Annex A, CO2-equivalents are not used to 

convert emission in the separate gases to CO2 weight [96, 99, 100]. Doing so would distort the social 

costs of CH4 and N2O [20, 101]. Annex A explains joint sampling of the marginal social costs for use 

with emissions quantities [1]. 

 

Figure 5: weights specified in a SPIQ-FS build file indicate how the IWG-SCGHG Monte-Carlo simulations of the social costs 
of CH4, CO2 and N2O can be used be used to obtain samples of the social costs of an emitted GHG in year 𝑡 in the future 
scenario 𝑠. 

1.3.6 Cost Model 02: marginal damage costs of blue water withdrawals 
The blue water withdrawal costing model estimates future damages of water scarcity converted into 

international dollars (PPP) in year 𝑡. 
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Figure 6: blue water withdrawal damages through the impacts of future water scarcity. Loss of food supply leads to 
malnutrition and productivity losses, and the impact of scarcity on sectors using water leads to loss of surplus. 

The calculation assumes that water withdrawal in a water basin will impact the availability of water 

resources in that basin in future years after the withdrawal, either through depleting slow recharge 

water resources such as fossil water aquifers or through a reduction in the quantity of usable blue 

water such as increased salinity [102]. Future water economic users include industry, agriculture, 

drinking water and sanitation, and secondary services from ecosystems in the water basin [103, 

104]. Future versions of the cost model aim to include costs of reduced environmental flows [105]. 

The amount of water deprived from economic users of the water in the basin at a future time 𝑡 + 𝑟 

due to blue water withdrawal in the basin at time 𝑡 is called the water deprivation due to the blue 

water withdrawal. 

Even if water markets operated in the future in the water basin [104], loss of economic value can 

occur from water deprivation through a cost increase or reduction in production of goods [103]. The 

model makes the simple assumption that the deprived water will concentrate in the agricultural 

sector [106, 107]. Water deprivation for agricultural use results in either malnutrition and 

productivity losses, or income losses [28]. 

The model for water deprivation is based on a lifecycle impact assessment method [108]. Though 

water deprivation is used as quantitative factor in [108] and is associated to water scarcity through a 

formula, it is not conceptually defined in [108]. The calculation of water deprivation in [108] is 

geospatially specific, being based on the water stress index of individual countries, but it is not 

temporally specific. It does not indicate what amount of water deprivation will occur when in the 

future. The default SPIQ-FS water cost model assumes that the calculation of water deprivation of 

[108] is the total water deprivation due to the blue water withdrawal, and allocates portions of the 

water withdrawal into the future using a Poisson process [109]. The Poisson rate depends on the 

water stress index of the country and groundwater versus surface water withdrawals. Countries with 

high water stress dependent on exploiting groundwater will experience water deprivation sooner 

than countries with low water stress and economies utilising mostly surface blue water. 

There are very few, if any, modelled scenarios of global water scarcity out to 2100 in the literature 

[110]. Adapting them to replace the Poisson process allocation and the calculation of [108] is beyond 
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the scope of version 0 of SPIQ-FS. The spatial-temporal allocation of water deprivation is one the 

components in the water model for whether damage costs are different between the build 

scenarios. Productivity gains in water-use by economic users in the country [111], whether the 

country shifts its economy to be less dependent on blue water natural capital [112], and the 

environmental conditions affecting hydrology in the basin [113], are the three main factors that may 

alter the water deprivation between the scenarios at time 𝑡 + 𝑟 from the same amount of blue 

water withdrawal at time 𝑡. It would require complex coupled economic and environmental 

modelling to project global water deprivation out to 2100. To be pragmatic, to indicate the 

differences in scenario we alter the default water deprivation calculation by a multiplicative term 

𝑊𝐷𝐹𝐴(𝑐, 𝑠, 𝑡 + 𝑟) which needs to be specified in the series of economic variables in Table 1. Trends 

for 𝑊𝐷𝐹𝐴(𝑐, 𝑠,⋅) where 𝑡 + 𝑟 is greater than the maximum value for 𝑡 are extended up to 2100 

using Holt’s linear trend method. 

Water deprivation from agricultural use in year 𝑡 + 𝑟 results in malnutrition and income effects. 

Ideally, an economic equilibrium would determine the balance between the two effects, the reduced 

domestic supply creates a shortfall in meeting domestic demand, which can result in higher prices 

for that supply and imports to meet the shortfall [114]. The shortfall in demand at equilibrium will 

result in malnutrition effects, and the net income losses from reduced supply but higher prices result 

in value loss to domestic agriculture (imports at higher prices may result in a gain to other 

countries). The calculation of [108] does not consider economic redistribution of shortfall demand. 

We assume the extreme poor bear the demand shortfall and therefore caloric loss from water 

deprivation. We assume income effects on non-extreme poor farmers are not sufficient to affect 

caloric intake - they suffer income losses equal to the reduction in production from the water 

deprivation. Extreme poor agricultural producers bear both demand shortfall and incomes losses 

from reduced production. 

Shortfall in demand is translated to caloric loss in the domestic population, and thereby to an 

increase in the prevalence of undernourishment following the scheme of [108], the details are in 

Annex A [3]. Module 103 and module 102 are used to translate prevalence of undernourishment to 

health outcomes and associated costs of productivity in the year 𝑡 + 𝑟. The discounting module then 

coverts the costs in 𝑡 + 𝑟 to a comparable value to economies in year 𝑡. Module 103 describes how 

countries decrease in their vulnerability to undernourishment from loss of food production in the 

year 𝑡 + 𝑟 compared to year 𝑡 by either having higher real disposable incomes to reduce demand 

shortfall or having sufficient surplus of nourishment that the loss does not lead to 

undernourishment. Also, as countries increase in development, better healthcare leads to less 

disease outcomes from the same percentage of undernourished. The cost of a DALY from protein-

energy malnutrition also changes as countries develop (Module 102). Roughly, the combination of 

Module 103 and Module 102 describes the changes in marginal labour productivity with 

undernourishment treated as an input. 

The income loss from a deprived m3 of blue water is based on a global spatial dataset of the 

monetary value of a m3 of blue water to crops in 2020 [107]. The values in the dataset are projected 

to the year 𝑡 + 𝑟 by considering country specific improvements in water efficiency and changes in 

farm-gate prices. Improvements in agricultural water efficiency from technology [115] are included 

by multiplying values in the data set by the factor 𝑊𝑃𝐴𝐴(𝑐, 𝑠, 𝑡 + 𝑟) below. Change in farm-gate 

prices relative to costs is incorporated by a Food Producer Price Index (FPPI) projection of country 𝑐 

in scenario 𝑠 at time 𝑡 with value 1 in the base year 2020. FPPI is the increase or decrease in farm 

gate prices relative to costs averaged across commodities [116]. FPPI needs to be specified in the 
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series of economic variables in Table 1. Change in incomes from future trends in agricultural prices 

are included by multiplying values in the data set by 𝐹𝑃𝑃𝐼(𝑐, 𝑠, 𝑡 + 𝑟). 

Water productivity improvements at same cost for all sectors is one of the considerations in the 

factor 𝑊𝐷𝐹𝐴 [111]. However, the specific water productivity of the agricultural sector can mitigate 

the agricultural production losses from the water deprivation [115]. Since both productivity loss and 

income damages result from a change in agricultural production, a specific water productivity 

agricultural-sector adjustment is applied for country c in scenario s at time t, 𝑊𝑃𝐴𝐴(𝑐, 𝑠, 𝑡 + 𝑟), to 

reduce the effective water deprivation. 𝑊𝑃𝐴𝐴(𝑐, 𝑠, 𝑡 + 𝑟) needs to be specified in the series of 

economic variables in Table 1. 𝑊𝑃𝐴𝐴(𝑐, 𝑠, 𝑡 + 𝑟) is a proportional index estimating increases in 

volume of food supply (as a proxy for both caloric and value increase) from same water supply and 

same real costs of production. The baseline is 1 in 2020. 

1.3.7 Cost Model 03: marginal damage costs of nitrogen emissions to air and surface 

waters 
The nitrogen emissions costing model version 0 estimates damages in international dollars (PPP) in 

year 𝑡 from volatilization of NH3 (ammonia) and NOx (nitrous oxides) to air [27], and run-off of 

reactive nitrogen into surface waters, predominately soluble NO3- (nitrate) [117]. Marginal costs for 

leaching of nitrate into subsoils and deep water sources [118, 119] are included in the cost model, 

but these costs in both marginal cost and total cost from quantity terms are generally less than the 

run-off to surface waters [120]. Ammonia is also the predominate cost of volatilized nitrogen from 

direct land-use activities, with NOx associated to transport and energy used in the production and 

consumption of food [121-125]. Emission of NOx is also more regulated than emission of NH3 [126, 

127]. Nitrogen emissions are almost exclusively through production, with a minor part from food 

waste [128]. 

Due to the heterogeneity of manure treatment methods, the application of fertilizers, and climatic 

and soil conditions, it is difficult to base marginal costing on the quantities of application of synthetic 

fertilizer or head of livestock per acre [129]. The user of a SPIQ-FS dataset is required to calculate the 

four types of emissions (NH3 to air, NOx to air, Nr to surface water, Nr to deep waters). The nitrogen 

costing models does not include marginal N2O damage costs from primary or secondary emission 

[130], as they are included in the GHG costing model. 

The damage costs from volatilization concentrate on human health effects, but also contribute to 

crop losses through terrestrial acidification and ozone production [121]. Additional surface water 

emission quantities from primary air emissions occur through deposition [117]. The damage costs 

from surface water run-off come from impact on ecosystem services downstream [117], with 

catchment specific percentages of nitrogen accumulating in terrestrial ecosystems fed by the water 

sources and then reaching coastal ecosystems [131, 132]. Acidification and eutrophication are the 

primary drivers of ecosystem impacts [133-135]. Eutrophication and some effects of acidification are 

consequences of biodiversity loss [136, 137]. Accumulated nitrogen from run-off can undergo 

secondary emission to air of NH3, NOx and N2O, [117]. The process of deposition and secondary 

emission from primary air and surface water emissions is called the nitrogen cascade [121]. 

Interactions between the global nitrogen, carbon, and methane cycles [117, 138, 139] are not fully 

represented by the separation of costing models. While excess nitrogen is responsible for 

biodiversity loss [140, 141] it increases sequestration through growth of biomass [138], so the effect 

on ecosystem services can be mixed. This interaction is not modelled directly, but factors into the 

correlation between nitrogen and CO2 marginal costs within SPIQ-FS. 
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Unlike the marginal value of water to crop production, presently there are no global spatial datasets 

of marginal loss to ecosystems services from exposure to excess soluble nitrogen, or marginal losses 

to human productivity from spatially specific emission of ammonia. 

The most developed modelling of the air and surface water pathways has been done for the US 

[142], the EU nitrogen assessment [143, 144], and to an increasing degree in China [145, 146]. The 

most comprehensive study on marginal costs was conducted in the EU nitrogen assessment [147]. 

The developed modelling was used as the basis for transfer of the EU marginal costs, with the 

caveats mentioned in Annex A [2]. 

The human health modelling is most advanced, with high- and low-resolution chemical transport 

models available to model the exposure of human populations to sources of emissions [148-150]. 

The modelling calculates attributable DALYs by intersecting population densities with the 

contribution of ammonium particles to PM2.5 pollution. The SPIQ-FS model uses value transfer of a 

detailed county-level resolution of attributable DALYS from United States NH3 and NOx air pollution 

[151]. The United States has over 3000 counties. Transfer parameters for marginal cost included 

population density, temperature, NOx emissions, SOx emissions, and NH3 emissions [151, 152]. SOx 

and NOx emissions appear for several reasons, because most NH3 human health damage factors 

through the formation of ammonium compounds which require NOx and SOx to be present in the 

atmosphere [121], and NOx is also a proxy for economic activity due to its production by transport 

and energy sectors. DALYs are costed as productivity losses using module 102. NH3 and NOx human 

damage costs are strongly correlated, and this correlation was estimated from the sample set of 

3000 counties and is applied in the SPIQ-FS uncertainty modelling. 

Ozone costs from NOx emissions are transferred using FAO farm-gate cereal prices [117, 146, 153]. 

Transfer of the marginal costs of reactive nitrogen in surface waters is based upon the proportional 

transport of nitrogen to inland and coastal waterways using a global spatial dataset [119]. The 

relative value of ecosystem services in inland or coastal is used to value transfer based on a constant 

proportion between effective hectares of lost ecosystem services and emissions to surface waters. 

See Annex A [2]. Value of ecosystem services are provided by module 104. Costs from secondary 

emission in the surface water cascade is contained inside the calculation of the EU nitrogen 

assessment marginal values but cannot be adjusted to countries external to the EU without redoing 

the model of the EU nitrogen assessment. 

The marginal costs of deposition on land are transferred using the same method based on 

proportion of deposition retained on land and relative value of ecosystem services from terrestrial 

ecosystems (tropical forests, temperate forests, woodland & shrubland, and grass & range-land) 

[136, 137, 154]. 

The effects of nitrogen pollution on waterways and ecosystem occur relatively quickly [155], so 

discounting is not used in the costing model for ecosystem effects. A perpetuating loss of services 

from a permanent alteration of ecosystems would be an additional costing component to future 

modelling. Time displacement between exposure to particulate matter and respiratory disease 

burden is assumed to be 10 years [120]. There is a considerable time lag between the onset of 

leaching and the nitrogen in deep water causing effects as nitrate in drinking water [155, 156]. 

Discounting is applied to this time lag. 
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Figure 7: nitrogen emission damages through effects on human health and losses of ecosystem services. NH3 and NOx 
emissions to air lead to attributable PM2.5 exposure in downwind human populations. Riverine transport of Nr run-off from 
fields due to human application and deposition of emissions to air leads to, predominately, loss of ecosystem services 
through acidification, eutrophication, and biodiversity loss. Losses to crop production from O3 exposure due to NOx 
emission, and human health damage from exposure to nitrate in drinking water are, globally, lesser pathways to damages. 

The SPIQ-FS nitrogen costing model version 0 is based on parametric value transfer with uncertainty. 

The transfer parameters allow costs to be projected temporally as well as transferred spatially.  

Human health marginal damage costs from air emissions of NH3 and NOx are adjusted to a future 

time by changes to discount rate from module 101, temporal changes in productivity loss due to 

death or disability, and parametric adjustment of relative exposure factors. Parameters projected for 

exposure include Population, and GDP, ATemp, [151]. To project total NH3, NOx and SOx emissions, 

a vector autoregression model including NH3, NOx, SOx, GDP, Population and HDI was used. Using 

the GDP, Population, HDI and ATemp projections in the trained model resulted in NH3, NOx, SOx 
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projections. The correlation between NH3 and NOx health damages was assumed too persistent 

unchanged. The projection of only exposure may omit future mitigation of PM2.5 health effects, 

including increased use masks or filtration in human living spaces, and improvements in population 

general health due to development [157]. Over 90% of the global burden or respiratory disease is 

estimate to occur in low and middle income countries despite developed countries have similar 

prevalence [158], indicating increased vulnerability as well as exposure at lower levels of 

development. Historical datasets of national DALYs due to respiratory disease (COPD) and PM2.5 

exposure were available from the WHO [159] 

(https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/global-health-

estimates-leading-causes-of-dalys) and OECD 

(https://stats.oecd.org/Index.aspx?DataSetCode=EXP_PM2_5), respectively, and were used to 

transfer and project forward the relative effect of HDI for vulnerability to respiratory disease. 

Ecosystem damage costs from deposition and surface water primary emissions are adjusted similarly 

by considering marginal changes in exposure and value loss. See Annex A [2]. Changes in the value of 

ecosystem services is projected within Module 104. While we have historical data that can be used 

to understand change in marginal changes in human productivity losses to PM2.5 exposure over 

time due to factors such as HDI, there are no global data sets to understand how the response of 

ecosystem services to the same load of nitrogen change over time across the categorical and spatial 

distribution of ecosystems. General environmental degradation due to climate change might 

exacerbate the value loss from the same exposure of nitrogen load, and accumulated nitrogen in the 

environmental [156] may also increase the damage to ecosystem function from the same load. In 

the absence of estimates of marginal changes in ecosystem productivity with nitrogen loads as 

inputs, we keep the effective loss of hectares of ecosystem services as a function of nitrogen loads 

constant over time. Damage from acidification of terrestrial ecosystems due to deposition of 

reactive nitrogen on land is treated similarly. 

Nitrogen damage costs are spatially specific and transfers in the above costing model are based 

upon national averaging [160]. Temporal projections omit changes in the intranational distribution 

of populations, emission sites, and ecosystems. The projection also omits distributional and 

volumetric changes in nitrogen cascades due to continued emissions and environmental changes. As 

an example, saturation of nitrogen pools may increase the relative amounts of excess nitrogen in 

downstream ecosystem per unit of primary emission.  

Ozone costs from NOx emissions were temporally projected using FPPI, which inflates 2020 FAO 

farm-gate cereal prices. This may omit mitigation effects in agricultural production, such as O3 

resistant crops [161], or underestimate losses from increases in yield in exposed cropland (including 

changes in the distribution of cropland and crop types [162]). 

Nitrate in drinking water due to leaching has relatively small marginal costs compared to the other 

nitrogen emission [120]. Outside of changes to discount rate from module 101 and the temporal 

changes in productivity loss due to death or disability, leaching marginal damage costs are not 

adjusted temporally for SPIQ-FS version 1. This may omit effects of organic and inorganic nitrogen 

saturation in soils from continued synthetic fertiliser use and livestock land-use. Neither improved 

nitrate filtration, nor increased reliance on groundwater drinking sources, in the future were 

considered. 

1.3.8 Cost Model 04: marginal damage costs of land-use change 
The land-use costing model estimates the value change in ecosystem services from land-use change 

in international dollars (PPP) in year 𝑡. The marginal value of ecosystem services in the units of ha/yr 

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/global-health-estimates-leading-causes-of-dalys
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/global-health-estimates-leading-causes-of-dalys
https://stats.oecd.org/Index.aspx?DataSetCode=EXP_PM2_5
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is obtained from the common module 104 and based on a statistical analysis of the ecosystem 

services valuation database (ESVD) [78, 163-166]. 

In important feature is the restoration of the services over time, or the adaptation of the economy 

to the services provided by the changed biome, so that the ecosystem services lost from the original 

biome can be projected forward in time for country 𝑐 in year 𝑡 under scenario 𝑠, [167]. This 

projection is difficult, because, like the water deprivation factor in cost model 02, it relies on specific 

consequential biophysical and economic modelling of the future scenarios, [81-83]. 

The projection of the persistence of the effects of the land-use change is used to aggregate and 

discount the damage costs from future years from the change affected in year 𝑡. 

For most food and land-use studies will be conversion of cropland and pasture to forest and 

grassland (abandoned land), and conversion of grassland and forests to cropland and pasture (land-

clearing) [168]. Studies suggest that biodiversity generally takes greater than 10 years to recover 

[169] with impacts still visible for up to 20 years [170] from agricultural land-clearing. Some changes, 

such as alteration of water retention and water filtrations services may effectively be permanent and 

require economic adaptation [171]. 

By default, SPIQ assumes a 20 year horizon for the effect of land-use changes with no additional 

adaptation of the economy to utilise the non-food or non-forest provision services provided by the 

new biome outside of that described by the social discount rate. This default setting allows the 

derived marginal damage costs for land use to be used in a modelling exercise where both land 

conversions to cropland and pasture, and future conversions of cropland and pasture back to 

grasslands or forest, are counted. 

 

Figure 8: land-use change damages from effective loss of ha of ecosystem services. Module 104 provides estimates of the 
ecosystem service loss per ha for a future year. A modelling process needs to indicate the number of future years, and the 
degree of loss in those years, due to the ha of land-use change in country 𝑐 in year 𝑡 in scenario 𝑠. The land-use change is 
from one biome to another within the 8 biomes costed, or to a biome considered to provide no ecosystem services to be 
counted into the damage costing. The amount of change in future year is multiplied against the difference in value between 
the biomes, and then aggregated across the years of lost services with discounting applied. 

1.3.9 Cost Model 05: marginal damage costs of undernourishment 
The undernourishment costing model estimates damage to productivity from protein-energy 

malnutrition in international dollars (PPP) in year 𝑡. 

The cost model pairs modules 102 and 103, to estimates of the FAO measure of the prevalence of 

undernourishment (PoU) in the quantities 𝑞(𝑐, 𝑠, 𝑡). A separate modelling process needs to estimate 

the future changes to PoU in country 𝑐 in year 𝑡 under scenario 𝑠. 
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Figure 9: Module 103 estimates the DALYs from protein-energy malnutrition due to prevalence of undernourishment. HDI 
adds high explanatory power to a partial quadratic relationship between DALYs and PoU, and HDI trajectories in the set of 
economic and demographic projections associated to a scenario can be used to adjust the estimation of DALYs. The errors in 
the quadratic relationship are modelled as described in Annex A, allowing Module 103 to produce samples of DALYs due to 
a given level of PoU. The sampling depends on HDI. Module 102 estimates the productivity loss that results from the lost 
DALYs from protein-energy malnutrition. Module 102 is also adjusted by the economic and demographic projections 
associated to a scenario. Multiplying a given level of PoU against the outputs of module 103 and 102 provides samples of 
damage costs factoring through health outcomes for undernourishment. 

There is a  ariant of the cost model that uses underweight (B I < 18.5) in place of the F O’s 

measure of undernourishment. A separate modelling processes needs to estimate the future 

headcounts of the population below 18.5 for country 𝑐 in year 𝑡 under scenario 𝑠. The underweight 

variant of the cost model uses the underweight variant of common module 103, described in Section 

1.3.3. 

1.3.10 Cost Model 06: marginal damage costs of high body mass index 
The cost model for high body mass index (BMI) uses modelled estimates of population BMI to 

estimate damage to productivity from health outcomes in international dollars (PPP) in year 𝑡. 

The model has three parts (Figure 10). The first part uses the estimates of population BMI, the form 

of headcount within BMI intervals [72, 73] of the population of country 𝑐 in year 𝑡 under scenario 𝑠. 

The headcounts within BMI intervals are used to estimate the mean and standard deviation of BMI 

for exposure within the 30 subpopulations of the Institute for Health Metrics and Evaluation (IHME) 

Global Burden of Disease (GBD) high BMI model [22]. The GBD subpopulations partition the 

population into males and females for 15 different age brackets. 

The mean and standard deviation estimates, for the GBD subpopulations, the exposure inputs for 

the IHME GBD high BMI model, which calculates population attributable fraction (PAF) [172, 173] of 

disease outcomes to high BMI. SPIQ-FS has replicated the IHME GBD high BMI model in the Python 

scientific programming language [174] as the second part of the costing model. Aggregating IHME 

GBD high BMI outputs estimates preventable disease and death due to high BMI in terms of DALYs. 

The DALY costing module (module 102) in SPIQ then converts DALYS to international dollars (PPP) in 

year 𝑡. The modelling is described in more detail in Annex A. 
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Figure 10: high body mass index (BMI) damages as productivity losses from disease outcomes. Temporal projection of the 
disease burden involves three components: (a) projecting the mean and standard deviation of the distribution of BMI in 
subpopulations in the country 𝑐 in scenario 𝑠 at time 𝑡; (b) the IMHE GBD BMI model maps the exposure to high BMI for 
subpopulations to the PAFs for disease outcomes, which is the fraction of the total disease burden (measured in DALYs) 
attributable to BMI > 25, and; (c) the total disease burden from noncommunicable diseases for subpopulations of the 
country c are predicted for the year 𝑡 under the scenario 𝑠. Together (a) and (b) determine the attributable fractions from 
modelling output, which provides the change in DALYS for country 𝑐 in year 𝑡 under scenario 𝑠 when the attributable 
fractions are multiplied by total disease burden and aggregated across the subpopulations. Module 2 is used to cost the 
DALY burden in terms of productivity losses. The calculation of BMI must come from modelling outcomes within q(c,s,t) and 
e(c,s,t), taking into account food supply, energy requirements, and physical activity. The current SPIQ model does not have 
an internal model to calculate the mean and standard deviation from food supply and economic and demographic 
variables. 

Linking provided modelling of headcounts in BMI intervals for country 𝑐 in year 𝑡 under scenario 𝑠 to 

the first two components of the costing model ((a) and (b) in Figure 10) calculates the PAFs which 

attribute total disease burden to high BMI. We assume the GBD relative risk curves remain constant, 

trends which could potentially alter the relative risk curves include advances or cost effectiveness in 

medical technology. We also assume that the GBD two-parameter family of distribution of BMI 

remains constant. Future trends could cause the shape of the distribution to change. 

We make temporal adjustments to the costing model in module 102, described earlier, and to the 

total burden of disease ((c) in Figure 10). Projections of the total burden of disease for disease 

outcomes associated to BMI and dietary intake are the same and are described in the next section. 

1.3.11 Cost Model 07: marginal damage costs of noncommunicable disease burden from 

dietary intake 
The noncommunicable disease (NCD) burden from dietary intake costing model uses food supply 

quantities in the vector 𝑞(𝑐, 𝑠, 𝑡) and economic and demographic variables from 𝑒(𝑐, 𝑠, 𝑡) to 

estimate damage to productivity from the health effects of intake in international dollars (PPP) in 

year 𝑡. 

The model has three parts (Figure 11). The first part uses FAO national food supply quantities and 

economic and demographic variables to estimate dietary intake distribution per capita for 30 

subpopulations [175]. The subpopulations partition the population into males and females for 15 

different age brackets. The per capita dietary intake distributions are the exposure inputs for the 
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Institute for Health Metrics and Evaluation (IHME) Global Burden of Disease (GBD) NCD model [21], 

which calculates population attributable fraction (PAF) of disease outcomes to dietary intake. 

Dietary intake in the GBD NCD model is a mixture of diet components and nutrients [176]. SPIQ-FS 

has replicated in the Python scientific programming language [174] the IHME GBD NCD model as the 

second part of the costing model. Aggregating IHME GBD NCD outputs estimates preventable 

disease and death due to dietary intake in terms of DALYs. The DALY costing module (module 102) in 

SPIQ then converts DALYS to international dollars (PPP) in year 𝑡. The modelling is described in more 

detail in Annex A [5]. 

 

Figure 11: dietary intake damages as productivity losses from noncommunicable disease outcomes. Temporal projection of 
the disease burden involves three components: (a) 14 future food supply and 6 economic and demographic variables for the 
country 𝑐 in scenario 𝑠 at time 𝑡 are mapped to the 15 dietary intake exposure categories for subpopulations in the IHME 
GBD model for non-communicable disease; (b) the IMHE GBD model maps 15 dietary intake exposure categories for 
subpopulations to the PAFs for disease outcomes, which is the fraction of the total disease burden (measured in DALYs) 
from noncommunicable diseases attributable to the dietary intake exposure, and; (c) the total disease burden from 
noncommunicable diseases for subpopulations of the country c are predicted for the year 𝑡 under the scenario 𝑠. Together 
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(a) and (b) determine the attributable fractions from national food supply and economic and demographic changes, which 
provides the change in DALYS for country c in year t under scenario s when the attributable fractions are multiplied by total 
disease burden and aggregated across the subpopulations. Module 2 is used to cost the DALY burden in terms of 
productivity losses. The 14 food supply variables are based on FAO Food Balance Sheet (FBS) items with 4 digit code, or 
aggregates where the 4 digit item in brackets represents the dominant FBS item 

We described the temporal components and inputs that can be used to adjust the costing model. 

The non-linear regression using national food supply, and national economic and demographic 

variables, to predict dietary intake (the first part of cost model 07) require changes to 14 national 

food supply quantities to be encoded in 𝑞(𝑐, 𝑠, 𝑡). The national food supply variables used in the 

non-linear regression are FAO Food Balance Sheet (FBS) categories [177, 178], or aggregates of FAO 

FBS categories. Ten years of historical FAO FBS data in the categories from 2010-2019 were used to 

train and cross-validate the non-linear regression model [5]. Diets change in populations [179, 180] 

but evidence suggests they are relatively stable to train over a ten year window [181]. Non-linear 

regression [182, 183] far out-performed linear regression, showing that linear combination of 

national food supply components to estimate population dietary intake are inaccurate [184, 185] 

and do not account well for cooking processes [186], and food waste behaviour at the consumer 

level [187-189]. The non-linear regression also showed that clustering national dietary patterns was 

useful for reducing modelling error [190]. At present, the non-linear regression model cannot 

represent any structural changes – if new FBS categories (such as plant-based proteins) become 

significant in the future to dietary intake of whole grains, salt, polyunsaturated fats and trans-fats, 

the historically validated regression cannot reflect categorical changes. In this example, decrease in 

dairy and meat intake would be observed through increased in plant-based processed product 

supply in the historically trained regression, and effects from an increase in high processed foods – 

but not new effects from different categories of food products [191]. 

The non-linear regression uses 6 other variables that are designed to reflect cultural, behavioural, 

and economic differences that are relevant to differences in dietary intake [5, 180]. Three of the 

variables, representing geographic distances between countries [192], historical cultural factors 

[192], and genetic heritage [193], are assumed to be constant. Significant changes in these variables 

are assumed to occur over longer time frames than the period 2020-2050. The final three variables 

relate to income and nutrition transition. The variables are HDI which is a unitless index between 0 

and 1, and ultra-processed food and drink sales (UPF and UPD [194]) in units of kg/capita/yr [195]. 

Development is expected to have a direct effect on the transformation of supply to intake through 

cooking and food waste behaviour, [187, 196, 197]. Basic functional regressions show strong 

explanation by an exponential relationship with UPF as a dependant variable of HDI and Urban-Rural 

Ratio (Figure 11) cross-validated by previous years [198, 199]. A similar regression shows moderate 

explanation by an exponential relationship with UPD as a dependant variable of GNI and Age 

Dependency (Figure 11) cross-validated by previous years [195, 200]. Over time the explanatory 

power of UPD by GNI has weakened. HDI, GNI, the Urban-Rural Ratio and Age-Dependency are 

correlated [201] national level statistics estimated by UNDP or World Bank. Including them in the 

economic and demographic factors 𝑒(𝑐, 𝑠, 𝑡) means that we can project forward in scenarios the 

cultural, behavioural, and economic differences relevant to differences in dietary intake, and take 

them into account when estimating PAFs for a country 𝑐 in scenario 𝑠 at time 𝑡. 

The non-linear regression model, coupled to the replication of the IHME GBD NCD model within 

SPIQ, calculates PAFs within 30 subpopulations (characterised by gender and age) for the country 𝑐 

in the scenario 𝑠 in year 𝑡. 
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The PAFs for disease outcomes (such as cardio-vascular disease, stomach cancer, etc.) need to be 

multiplied by the total number of DALYs attributed to the disease outcome in the 30 subpopulations 

in each country [172, 173]. Therefore, a separate modelling process (the third part of the costing 

model) needs to project forward the total DALY outcomes from NCDs for 30 subpopulations in each 

country. The IHME GBD now has a forecasting component, which projects forward the total DALYS 

from disease outcomes, however this forecasting process is not yet developed enough to be 

adaptable to different specifications of drivers and matched to build scenarios. Projections of 

regional or national total burden of disease exist based on current trends [202], but would require 

adjustment for alternative future scenarios. We do a simpler projection forward using population as 

one of the factors in 𝑒(𝑐, 𝑠, 𝑡) and a demographic profile that apportions the total population to the 

subpopulations. HDI and historical levels of the disease outcomes per capita in subpopulations are 

pooled across countries and times to project disease outcomes. 

Combined, the temporal update to PAF calculations described, the projection of total burden of 

disease outcomes, and module 102 that projections forward costs of DALYS, are used to adjust the 

NCD from dietary intake costing model for a country 𝑐 in the scenario 𝑠 in year 𝑡. 
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